Morphogenic, molecular and cellular adaptations for unidirectional airflow in the chicken lung
DOI:
10.1242/dev.204346
Publication Date:
2025-04-03T10:19:16Z
AUTHORS (7)
ABSTRACT
ABSTRACT
Unidirectional airflow in the avian lung enables gas exchange during both inhalation and exhalation. The underlying developmental process and how it deviates from that of the bidirectional mammalian lung are poorly understood. Sampling key developmental stages with multiscale 3D imaging and single-cell transcriptomics, we delineate morphogenic, molecular and cellular features that accommodate the unidirectional airflow in the chicken lung. Primary termini of hyper-elongated branches undergo proximal-short and distal-long fusions, forming parabronchi for air conduction. Through the parabronchial smooth muscle, neoform termini extend radially to form gas-exchanging alveoli. Supporting this radial alveologenesis, branch stalks halt their proximalization, defined by SOX9-SOX2 transition, and become SOX9low parabronchi. Primary and secondary vascular plexi interface with primary and neoform termini, respectively. Single-cell and Stereo-seq spatial transcriptomics reveal a third, chicken-specific alveolar cell type expressing KRT14, hereby named luminal cells. Luminal, alveolar type 2 and alveolar type 1 cells sequentially occupy concentric zones radiating from the parabronchial lumen. Our study explores the evolutionary space of lung diversification and lays the foundation for functional analysis of species-specific genetic determinants.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (77)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....