Lysosome fusion to the cell membrane is mediated by the dysferlin C2A domain in coronary arterial endothelial cells
0301 basic medicine
Fas Ligand Protein
Cell Membrane
Endothelial Cells
Membrane Proteins
Muscle Proteins
NADPH Oxidases
Ceramides
Coronary Vessels
Protein Transport
03 medical and health sciences
Membrane Microdomains
Phosphatidylinositol Phosphates
Animals
Cattle
RNA Interference
RNA, Small Interfering
Lysosomes
Signal Transduction
DOI:
10.1242/jcs.094565
Publication Date:
2012-02-21T01:55:17Z
AUTHORS (7)
ABSTRACT
Dysferlin has recently been reported to participate in cell membrane repair in muscle and other cells through lysosome fusion. Given that lysosome fusion is a crucial mechanism that leads to membrane raft clustering, the present study attempted to determine whether dysferlin is involved in this process and its related signalling, and explores the mechanism underlying dysferlin-mediated lysosome fusion in bovine coronary arterial endothelial cells (CAECs). We found that dysferlin is clustered in membrane raft macrodomains after Fas Ligand (FasL) stimulation as detected by confocal microscopy and membrane fraction flotation. Small-interfering RNA targeted to dysferlin prevented membrane raft clustering. Furthermore, the translocation of acid sphingomyelinase (ASMase) to membrane raft clusters, whereby local ASMase activation and ceramide production – an important step that mediates membrane raft clustering – was attenuated. Functionally, silencing of the dysferlin gene reversed FasL-induced impairment of endothelium-dependent vasodilation in isolated small coronary arteries. By monitoring fluorescence quenching or dequenching, silencing of the dysferlin gene was found to almost completely block lysosome fusion to plasma membrane upon FasL stimulation. Further studies to block C2A binding and silencing of AHNAK (a dysferlin C2A domain binding partner), showed that the dysferlin C2A domain is required for FasL-induced lysosome fusion to the cell membrane, ASMase translocation and membrane raft clustering. We conclude that dysferlin determines lysosome fusion to the plasma membrane through its C2A domain and it is therefore implicated in membrane-raft-mediated signaling and regulation of endothelial function in coronary circulation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (46)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....