Reciprocal expression of gill Na+/K+-ATPaseα-subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance
Gills
0303 health sciences
Acclimatization
Sodium Chloride
Gene Expression Regulation, Enzymologic
Isoenzymes
Protein Subunits
03 medical and health sciences
Animals
Seawater
RNA, Messenger
14. Life underwater
Sodium-Potassium-Exchanging ATPase
Salmonidae
DOI:
10.1242/jeb.02188
Publication Date:
2006-05-01T21:14:21Z
AUTHORS (4)
ABSTRACT
SUMMARYThe upregulation of gill Na+/K+-ATPase activity is considered critical for the successful acclimation of salmonid fishes to seawater. The present study examines the mRNA expression of two recently discovered α-subunit isoforms of Na+/K+-ATPase(α1a and α1b) in gill during the seawater acclimation of three species of anadromous salmonids, which vary in their salinity tolerance. Levels of these Na+/K+-ATPase isoforms were compared with Na+/K+-ATPase activity and protein abundance and related to the seawater tolerance of each species. Atlantic salmon (Salmo salar) quickly regulated plasma Na+, Cl– and osmolality levels within 10 days of seawater exposure, whereas rainbow trout(Oncorhynchus mykiss) and Arctic char (Salvelinus alpinus)struggled to ionoregulate, and experienced greater perturbations in plasma ion levels for a longer period of time. In all three species, mRNA levels for theα1a isoform quickly decreased following seawater exposure whereasα1b levels increased significantly. All three species displayed similar increases in gill Na+/K+-ATPase activity during seawater acclimation, with levels rising after 10 and 30 days. Freshwater Atlantic salmon gill Na+/K+-ATPase activity and protein content was threefold higher than those of Arctic char and rainbow trout, which may explain their superior seawater tolerance. The role of the α1b isoform may be of particular importance during seawater acclimation of salmonid fishes. The reciprocal expression of Na+/K+-ATPase isoforms α1a and α1b during seawater acclimation suggests they may have different roles in the gills of freshwater and marine fishes; ion uptake in freshwater fish and ion secretion in marine fishes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (38)
CITATIONS (165)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....