Polarization imaging-based radiomics approach for the staging of liver fibrosis

02 engineering and technology 0210 nano-technology 3. Good health
DOI: 10.1364/boe.450294 Publication Date: 2022-02-11T06:30:09Z
ABSTRACT
Mueller matrix imaging contains abundant biological microstructure information and has shown promising potential in clinical applications. Compared with the ordinary unpolarized light microscopy that relies on the spatial resolution to reveal detailed histological features, Mueller matrix imaging encodes rich information on the microstructures even at low-resolution and wide-field conditions. Accurate staging of liver fibrosis is essential for the therapeutic diagnosis and prognosis of chronic liver diseases. In the clinic, pathologists commonly use semiquantitative numerical scoring systems to determine the stages of liver fibrosis based on the visualization of stained characteristic morphological changes, which require skilled staining technicians and well-trained pathologists. A polarization imaging based quantitative diagnostic method can help to reduce the time-consuming multiple staining processes and provide quantitative information to facilitate the accurate staging of liver fibrosis. In this study, we report a polarization imaging based radiomics approach to provide quantitative diagnostic features for the staging of liver fibrosis. Comparisons between polarization image features under a 4× objective lens with H&E image features under 4×, 10×, 20×, and 40× objective lenses were performed to highlight the superiority of the high dimensional polarization image features in the characterization of the histological microstructures of liver fibrosis tissues at low-resolution and wide-field conditions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (38)
CITATIONS (17)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....