Real-time phase measurement of optical vortices based on pixelated micropolarizer array
0103 physical sciences
01 natural sciences
DOI:
10.1364/oe.23.020521
Publication Date:
2015-07-28T18:04:12Z
AUTHORS (8)
ABSTRACT
The special spiral phase structure of an optical vortex leads to an intriguing study in modern singular optics. This paper proposes a real-time phase measurement method of vortex beam based on pixelated micropolarizer array (PMA). Four phase-shifting fringe images can be obtained from a single interference image, thus the vortex beam phase can be obtained in real-time. The proposed method can achieve full-field phase measurement of the vortex beam with the advantages of lower computation and vibration resistance. In the experiments, the typical phases of vortex with different topological charges are loaded on a spatial light modulator (SLM) to generate diffraction vortex beam, and the phase distribution of vortex beam is obtained in real-time, which confirm the robustness of this method. This method is of great significance in promoting the study of optical vortices.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (37)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....