Nanosecond pulsed single longitudinal mode diamond Raman laser in the 1.6 µm spectral region
0103 physical sciences
02 engineering and technology
0210 nano-technology
01 natural sciences
DOI:
10.1364/ol.458424
Publication Date:
2022-03-28T12:00:30Z
AUTHORS (13)
ABSTRACT
We demonstrate the first nanosecond pulsed single longitudinal mode (SLM) intracavity-pumped diamond Raman laser, to the best of our knowledge. The eye-safe coherent source at 1634 nm, which was converted from the actively Q-switched 1342 nm Nd:YVO4 laser, yielded 4.35 W of multimode average output power with a pulse duration of 6 ns and peak power of 29 kW. By exploiting the spatial hole burning free gain mechanism in the Raman media, stable SLM operation was observed at low output power (0.46 W) for the free-running case. Furthermore, by incorporating an etalon in the fundamental standing-wave cavity, the spectral linewidth of the fundamental field was suppressed substantially below the diamond Raman gain linewidth and slightly less than the free spectral range of the mm-scale Raman resonator. Thereby, a much higher SLM output power of 1.63 W was obtained with a pulse duration of ∼9 ns and a spectral linewidth of ∼77 MHz.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (20)
CITATIONS (16)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....