Light-triggered 2D electron gas in a GaN-based HEMT with sandwiched p-GaN layers

DOI: 10.1364/ol.499084 Publication Date: 2023-07-25T15:46:12Z
ABSTRACT
In this work, a p-n junction-coupled metal-insulator-semiconductor (MIS) normally-off high-electron-mobility transistor (HEMT) UVPD is proposed. A two-dimensional electron gas (2DEG) at the AlN/U-GaN interface is entirely depleted with a dark current of 1.97 × 10−11 A because of the design of the sandwiched p-GaN layers. Under 365 nm illumination, the 2DEG is light triggered at Vds = 1 V with a high light on/off ratio of over 107 at a light power density of 286.39 mW·cm−2. Meanwhile, it exhibits fast rise and decay times of 248.39 and 584.79 µs, respectively. Moreover, a maximum responsivity (R) of 2.33 A/W, a maximum EQE of 793%, and a D* of 1.08 × 1013 Jones are obtained at Vds = 1 V. This can be attributed to the built-in electric fields in the configuration, which accelerate the flow of photogenerated carriers into the AlN/U-GaN channel. Additionally, the device showcases stable durability, repeatability, and a low driving voltage, making it highly suitable for applications in UV communication and space exploration.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....