Genetic dissection of assortative mating behavior

Male moths and butterflies QH301-705.5 Quantitative Trait Loci Courtship genetic loci Mating Preference, Animal evolutionary genetics animal behavior Chromosomes, Insect Sexual Behavior, Animal Sympatry speciation Species Specificity quantitative trait loci Animals Female Biology (General) gene flow Butterflies locus control region Research Article
DOI: 10.1371/journal.pbio.2005902 Publication Date: 2019-02-07T18:29:06Z
ABSTRACT
The evolution of new species is made easier when traits under divergent ecological selection are also mating cues. Such ecological mating cues are now considered more common than previously thought, but we still know little about the genetic changes underlying their evolution or more generally about the genetic basis for assortative mating behaviors. Both tight physical linkage and the existence of large-effect preference loci will strengthen genetic associations between behavioral and ecological barriers, promoting the evolution of assortative mating. The warning patterns of Heliconius melpomene and H. cydno are under disruptive selection due to increased predation of nonmimetic hybrids and are used during mate recognition. We carried out a genome-wide quantitative trait locus (QTL) analysis of preference behaviors between these species and showed that divergent male preference has a simple genetic basis. We identify three QTLs that together explain a large proportion (approximately 60%) of the difference in preference behavior observed between the parental species. One of these QTLs is just 1.2 (0-4.8) centiMorgans (cM) from the major color pattern gene optix, and, individually, all three have a large effect on the preference phenotype. Genomic divergence between H. cydno and H. melpomene is high but broadly heterogenous, and admixture is reduced at the preference-optix color pattern locus but not the other preference QTLs. The simple genetic architecture we reveal will facilitate the evolution and maintenance of new species despite ongoing gene flow by coupling behavioral and ecological aspects of reproductive isolation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (76)
CITATIONS (88)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....