Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data

DNA Copy Number Variations Procollagen-Proline Dioxygenase QH426-470 Tibet Polymorphism, Single Nucleotide Hypoxia-Inducible Factor-Proline Dioxygenases Renin-Angiotensin System 03 medical and health sciences Databases, Genetic Genetics Humans Selection, Genetic Phylogeny 2. Zero hunger 0303 health sciences Geography Genome, Human Altitude Gene Expression Profiling South America 15. Life on land Hypoxia-Inducible Factor 1, alpha Subunit Adaptation, Physiological Globins 3. Good health Genetics, Population Research Article
DOI: 10.1371/journal.pgen.1001116 Publication Date: 2010-09-09T19:17:59Z
ABSTRACT
High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (69)
CITATIONS (482)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....