Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways
0301 basic medicine
Cell Membrane
Drug Resistance
Membrane Proteins
Epistasis, Genetic
Molecular Sequence Annotation
Gene Expression Regulation, Bacterial
QH426-470
Culture Media
3. Good health
Microscopy, Electron
03 medical and health sciences
Genetics
Escherichia coli
Gene-Environment Interaction
Microtubule-Associated Proteins
Metabolic Networks and Pathways
Research Article
Oligonucleotide Array Sequence Analysis
DOI:
10.1371/journal.pgen.1002377
Publication Date:
2011-11-17T21:35:33Z
AUTHORS (23)
ABSTRACT
As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among > 235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (68)
CITATIONS (99)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....