Gene disruption by structural mutations drives selection in US rice breeding over the last century
Crops, Agricultural
DNA Repair
612
QH426-470
Environment
Genes, Plant
INDEL Mutation
Genetics
genetics & nucleic acid processing
Selection, Genetic
RNA structure
genomics and proteomics
2. Zero hunger
function
modification
rice
Oryza
bioinformatics
DNA
mutations
Plant Breeding
Mutation
Seeds
DNA Transposable Elements
Hybridization, Genetic
Gene-Environment Interaction
transposable elements
DNA expression
Genome, Plant
Research Article
DOI:
10.1371/journal.pgen.1009389
Publication Date:
2021-03-18T17:28:42Z
AUTHORS (12)
ABSTRACT
The genetic basis of general plant vigor is of major interest to food producers, yet the trait is recalcitrant to genetic mapping because of the number of loci involved, their small effects, and linkage. Observations of heterosis in many crops suggests that recessive, malfunctioning versions of genes are a major cause of poor performance, yet we have little information on the mutational spectrum underlying these disruptions. To address this question, we generated a long-read assembly of a tropicaljaponicarice (Oryza sativa) variety, Carolina Gold, which allowed us to identify structural mutations (>50 bp) and orient them with respect to their ancestral state using the outgroup,Oryza glaberrima. Supporting prior work, we find substantial genome expansion in thesativabranch. While transposable elements (TEs) account for the largest share of size variation, the majority of events are not directly TE-mediated. Tandem duplications are the most common source of insertions and are highly enriched among 50-200bp mutations. To explore the relative impact of various mutational classes on crop fitness, we then track these structural events over the last century of US rice improvement using 101 resequenced varieties. Within this material, a pattern of temporary hybridization between medium and long-grain varieties was followed by recent divergence. During this long-term selection, structural mutations that impact gene exons have been removed at a greater rate than intronic indels and single-nucleotide mutations. These results support the use ofab initioestimates of mutational burden, based on structural data, as an orthogonal predictor in genomic selection.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (51)
CITATIONS (9)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....