Activity-based protein profiling reveals both canonical and novel ubiquitin pathway enzymes in Plasmodium
DOI:
10.1371/journal.ppat.1013032
Publication Date:
2025-04-18T17:26:43Z
AUTHORS (7)
ABSTRACT
The ubiquitin-proteasome system (UPS) is essential for Plasmodium falciparum survival and represents a potential target for antimalarial therapies. We utilised a ubiquitin- activity based probe (Ub-Dha) to capture active components of the ubiquitin conjugating machinery during asexual blood-stage development. Several E2 ubiquitin-conjugating enzymes, the E1 activating enzyme, and the HECT E3 ligase PfHEUL were identified and validated through in vitro ubiquitination assays. We also demonstrate selective functional interactions between PfHEUL and a subset of both human and P. falciparum E2s. Additionally, the Ub-Dha probe captured an uncharacterized protein, PF3D7_0811400 (C0H4U0) with no known homology to ubiquitin-pathway enzymes in other organisms. Through structural and biochemical analysis, we validate it as a novel E2 enzyme, capable of binding ubiquitin in a cysteine-specific manner. These findings contribute to our understanding of the P. falciparum UPS, identifying promising novel drug targets and highlighting the evolutionary uniqueness of the Ub-proteasome system in this parasite.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....