Dose-dependent increases in p70S6K phosphorylation and intramuscular branched-chain amino acids in older men following resistance exercise and protein intake
0301 basic medicine
03 medical and health sciences
1116 Medical Physiology
610
1106 Human Movement and Sports Science
whey protein
muscles
Institute of Sport
College of Sports and Exercise Science
Exercise and Active Living (ISEAL)
Original Research
DOI:
10.14814/phy2.12112
Publication Date:
2014-08-08T21:43:20Z
AUTHORS (7)
ABSTRACT
Resistance exercise and whey protein supplementation are effective strategies to activate muscle cell anabolic signaling and ultimately promote increases in muscle mass and strength. In the current study, 46 healthy older men aged 60-75 (69.0 ± 0.55 years, 85.9 ± 1.8 kg, 176.8 ± 1.0 cm) performed a single bout of unaccustomed lower body resistance exercise immediately followed by ingestion of a noncaloric placebo beverage or supplement containing 10, 20, 30, or 40 g of whey protein concentrate (WPC). Intramuscular amino acid levels in muscle biopsy samples were measured by Gas Chromatography-Mass Spectrometry (GC-MS) at baseline (before exercise and WPC supplementation) plus at 2 h and 4 h post exercise. Additionally, the extent of p70S6K phosphorylation at Thr389 in muscle biopsy homogenates was assessed by western blot. Resistance exercise alone reduced intramuscular branch chain amino acid (BCAA; leucine, isoleucine, and valine) content. Supplementation with increasing doses of whey protein prevented this fall in muscle BCAAs during postexercise recovery and larger doses (30 g and 40 g) significantly augmented postexercise muscle BCAA content above that observed following placebo ingestion. Additionally, the fold change in the phosphorylation of p70S6K (Thr389) at 2 h post exercise was correlated with the dose of whey protein consumed (r = 0.51, P < 001) and was found to be significantly correlated with intramuscular leucine content (r = 0.32, P = 0.026). Intramuscular BCAAs, and leucine in particular, appear to be important regulators of anabolic signaling in aged human muscle during postexercise recovery via reversal of exercise-induced declines in intramuscular BCAAs.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (36)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....