Coordination Between Individual Agents in Multi-Agent Reinforcement Learning
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
DOI:
10.1609/aaai.v35i13.17357
Publication Date:
2022-09-08T19:48:36Z
AUTHORS (4)
ABSTRACT
The existing multi-agent reinforcement learning methods (MARL) for determining the coordination between agents focus on either global-level or neighborhood-level coordination between agents. However the problem of coordination between individual agents is remain to be solved. It is crucial for learning an optimal coordinated policy in unknown multi-agent environments to analyze the agent's roles and the correlation between individual agents. To this end, in this paper we propose an agent-level coordination based MARL method. Specifically, it includes two parts in our method. The first is correlation analysis between individual agents based on the Pearson, Spearman, and Kendall correlation coefficients; And the second is an agent-level coordinated training framework where the communication message between weakly correlated agents is dropped out, and a correlation based reward function is built. The proposed method is verified in four mixed cooperative-competitive environments. The experimental results show that the proposed method outperforms the state-of-the-art MARL methods and can measure the correlation between individual agents accurately.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (11)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....