Overlapping community detection combining content and link
0303 health sciences
03 medical and health sciences
DOI:
10.1631/jzus.c1200049
Publication Date:
2012-11-07T01:16:52Z
AUTHORS (3)
ABSTRACT
In classic community detection, it is assumed that communities are exclusive, in the sense of either soft clustering or hard clustering. It has come to attention in the recent literature that many real-world problems violate this assumption, and thus overlapping community detection has become a hot research topic. The existing work on this topic uses either content or link information, but not both of them. In this paper, we deal with the issue of overlapping community detection by combining content and link information. We develop an effective solution called subgraph overlapping clustering (SOC) and evaluate this new approach in comparison with several peer methods in the literature that use either content or link information. The evaluations demonstrate the effectiveness and promise of SOC in dealing with large scale real datasets.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....