Coreference-Aware Dialogue Summarization
FOS: Computer and information sciences
Computer Science - Computation and Language
Artificial Intelligence (cs.AI)
Computer Science - Artificial Intelligence
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
Computation and Language (cs.CL)
DOI:
10.18653/v1/2021.sigdial-1.53
Publication Date:
2023-11-26T08:36:02Z
AUTHORS (3)
ABSTRACT
Summarizing conversations via neural approaches has been gaining research traction lately, yet it is still challenging to obtain practical solutions. Examples of such challenges include unstructured information exchange in dialogues, informal interactions between speakers, and dynamic role changes of speakers as the dialogue evolves. Many of such challenges result in complex coreference links. Therefore, in this work, we investigate different approaches to explicitly incorporate coreference information in neural abstractive dialogue summarization models to tackle the aforementioned challenges. Experimental results show that the proposed approaches achieve state-of-the-art performance, implying it is useful to utilize coreference information in dialogue summarization. Evaluation results on factual correctness suggest such coreference-aware models are better at tracing the information flow among interlocutors and associating accurate status/actions with the corresponding interlocutors and person mentions.<br/>Accepted for presentation at SIGDIAL-2021. Version2: add BART-Large results/fix typos<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (14)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....