Habitat continuity and geographic distance predict population genetic differentiation in giant kelp
0106 biological sciences
570
Marine dispersal
Oceans and Seas
Isolation by distance
isolation by distance
01 natural sciences
microsatellites
Effective population size
Macrocystis pyrifera
habitat continuity
14. Life underwater
Ecosystem
Demography
marine dispersal
Connectivity
[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE]
kelp
Models, Genetic
[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]
population genetics
Genetic Variation
15. Life on land
GIS
connectivity
Macrocystis
effective population size
Microsatellite Repeats
DOI:
10.1890/09-0050.1
Publication Date:
2010-02-24T22:18:57Z
AUTHORS (7)
ABSTRACT
Isolation by distance (IBD) models are widely used to predict levels of genetic connectivity as a function of Euclidean distance, and although recent studies have used GIS‐landscape ecological approaches to improve the predictability of spatial genetic structure, few if any have addressed the effect of habitat continuity on gene flow. Landscape effects on genetic connectivity are even less understood in marine populations, where habitat mapping is particularly challenging. In this study, we model spatial genetic structure of a habitat‐structuring species, the giant kelp Macrocystis pyrifera, using highly variable microsatellite markers. GIS mapping was used to characterize habitat continuity and distance between sampling sites along the mainland coast of the Santa Barbara Channel, and their roles as predictors of genetic differentiation were evaluated. Mean dispersal distance (σ) and effective population size (Ne) were estimated by comparing our IBD slope with those from simulations incorporating habitat continuity and spore dispersal characteristics of the study area. We found an allelic richness of 7–50 alleles/locus, which to our knowledge is the highest reported for macroalgae. The best regression model relating genetic distance to habitat variables included both geographic distance and habitat continuity, which were respectively, positively and negatively related to genetic distance. Our results provide strong support for a dependence of gene flow on both distance and habitat continuity and elucidate the combination of Ne and σ that explained genetic differentiation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (51)
CITATIONS (85)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....