Tractability of Approximation of Functions Defined over Weighted Hilbert Spaces

multivariate approximation tractability QA1-939 information complexity 0101 mathematics weighted Hilbert spaces Mathematics
DOI: 10.20944/preprints202312.2272.v1 Publication Date: 2024-01-03T00:54:56Z
ABSTRACT
We investigate \texorpdfstring{$L_2$}{}-approximation problems in the worst case setting weighted Hilbert spaces \texorpdfstring{$H(K_{R_{d,\a,\g}})$}{} with weights \texorpdfstring{$R_{d,\a,{\bm \ga}}$}{} under parameters \texorpdfstring{$1\ge \ga_1\ge \ga_2\ge \cdots\ge 0$ and $1<\az_1\le \az_2\le \cdots$}{}. Several interesting appear this paper. consider error of algorithms that use finitely many arbitrary continuous linear functionals. Multivariate approximation; information complexity; tractability; spacesWe discuss tractability for involved spaces, which describes how complexity depends on \texorpdfstring{$d$}{} \texorpdfstring{$\va^{-1}$}{}. As a consequence we study strongly polynomial (SPT), (PT), weak (WT), \texorpdfstring{$(t_1,t_2)$}{}-weak (\texorpdfstring{$(t_1,t_2)$}{}-WT) all \texorpdfstring{$t_1>1$}{} \texorpdfstring{$t_2>0$}{} terms introduced absolute criterion or normalized criterion.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....