Size Distribution and Characteristics of Chemical Components in Ambient Particulate Matter
Air Pollutants
Japan
13. Climate action
11. Sustainability
Seasons
Particle Size
01 natural sciences
0105 earth and related environmental sciences
DOI:
10.2116/analsci.21.89
Publication Date:
2005-05-13T06:04:27Z
AUTHORS (6)
ABSTRACT
Ambient particulate matter and gas in Kyoto were investigated by gravimetric analysis, X-ray fluorescence spectrometry, and ion chromatography in order to clarify their behavior and origin. The size distribution and characteristics of the chemical components in ambient particulates collected on PTFE membrane filters using an Andersen air sampler were examined from August 2001 to April 2004. A four-stage filter pack method was used to sample the atmosphere for the determination of gas (SO2, HNO3, HCl, NH3) and particulate matter (SO42, NO3, Cl-, Na+, K+, Ca2+, Mg2+, NH4+) concentrations from October 2002 to April 2004. The concentration of SPM mass was in the range of 6.7 - 80.2 microg/m3. The size distributions of SPM mass were bimodal, peaking at around 0.65 - 1.1 and 3.3 - 4.7 microm, and 40 - 85% of SPM mass was fine particles (< 2.1 microm). Na, Mg, Al, Si, Ca, Cl, and Fe were mainly present in coarse particles (2.1 to 11.0 microm), while S was present in fine particles. The concentrations of Al, Si, Ca, Mg, and Fe in fine particles increased from March to April in 2002, and those in coarse particulates increased in November 2002 and from March to April in 2004. This may be the effect of the continental yellow sand "Kosa." The differences in the size distributions of Al, Si, Ca, Mg, and Fe in particles may depend on differences in their place of occurrence and course of transport from China to Japan. The concentration of HCl gas was higher than that of particulate chloride ion in summer. Nitric acid gas existed at higher concentrations in summer, but fine particulate nitrate ion was observed in winter. The gaseous-to-fine aerosol nitrate fraction became higher at warmer temperatures. Coarse sulfate was below 10%, and SO2 gas and fine particulate sulfate were above 90%.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (24)
CITATIONS (16)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....