Uncovering genomic regions controlling plant architectural traits in hexaploid wheat using GWAS
0301 basic medicine
2. Zero hunger
0303 health sciences
03 medical and health sciences
15. Life on land
DOI:
10.21203/rs.2.23079/v1
Publication Date:
2020-02-11T16:20:21Z
AUTHORS (7)
ABSTRACT
Abstract
Background: Wheat is a staple food crop worldwide. Plant height is a key factor in plant architecture as it plays a crucial role in lodging and thus affects yield and quality. Genome-wide studies are mostly applied in crop plants, due to its advanced genotyping technologies, identification of novel loci, and improved statistical approaches. Results: In this study, the population was genotyped by using Illumina iSelect 90K single nucleotide polymorphism (SNP) assay and finally 22,905 high-quality SNPs were used to perform a genome-wide association study (GWAS) for plant architectural traits employing four multi-locus GWAS (ML-GWAS) and three single-locus GWAS (SL-GWAS) models. As a result, 174 and 97 significant SNPs controlling plant architectural traits were detected by four ML-GWAS and three SL-GWAS methods, respectively. Among these SNP makers, 43 SNPs were commonly detected, including seven across multiple environments and thirty-six across multiple methods. Interestingly, five most stable SNPs (Kukri_c34553_89, RAC875_c8121_1490, wsnp_Ex_rep_c66315_64480362, Ku_c5191_340, and tplb0049a09_1302) consistently detected across multiple environments and methods, possibly played a role in modulating plant height and flag leaf length. When comparing ML-GWAS methods, pLARmEB was the most powerful and accountable for the detection of 49 significant SNPs that mostly contributed to plant height (36 SNPs). However, in SL-GWAS the FarmCPU model detected most of the significant SNPs. Moreover, a total of 152 candidate genes were found that are likely to be involved in plant growth and development which may provide insightful information related to plant architectural traits.Conclusion: Altogether, our results reveal 174 and 97 significant SNPs controlling plant architectural traits using four ML-GWAS and three SL-GWAS methods, respectively. The detection of the stable loci across multiple environments and methods, possibly play a role in modulating plant architectural traits in hexaploid wheat, and finally will contribute to the discovery of valuable SNP loci for marker-assisted selection (MAS) in wheat molecular breeding.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....