Nonlinearity and Lasing Topological Zero-Mode in Distorted Photonic Lattice

Lasing topological zero-mode Photonic hexagonal lattice with vortex distortion Nonlinearity effect
DOI: 10.2139/ssrn.4350097 Publication Date: 2023-02-06T19:26:45Z
ABSTRACT
Recently we have witnessed experimental realization of a Majorana zero-mode bound at vortex distortion induced in bipartite hexagonal photonic lattices. Here, we address an open question of the impact of nonlinearity on the zero-mode dynamics by theoretically investigating the abilities of topologically protected zero-modes to guide, couple and lase light in the presence of nonlinear effects. Light-intensity related nonlinearity enters the scene through a local nonlinear lattice response and driving properties: saturable nonlinear gain and linear loss. We demonstrate an efficient steady zero-mode lasing regime by managing the lattice and driving parameters. Obtained results open up possibilities for design of new topological lasers in length-scalable photonic platforms, such as multicore optical fibers. © 2023 Elsevier B.V.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (43)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....