Haploinsufficiency of Cnot3 Aggravates Acid-Induced Acute Lung Injury Likely Through Transcriptional and Post-Transcriptional Upregulation of Pro-Inflammatory Genes
ccr4-not complex
0303 health sciences
deadenylation
RM1-950
cnot3
ali
03 medical and health sciences
acute lung injury
ards
Pathology
RB1-214
Therapeutics. Pharmacology
Original Research
DOI:
10.2147/jir.s468612
Publication Date:
2024-08-15T04:50:23Z
AUTHORS (12)
ABSTRACT
Acute lung injury (ALI) is caused by a variety of illnesses, including aspiration pneumonia and sepsis. The CCR4-NOT complex is a large multimeric protein complex that degrades mRNA through poly(A) tail shortening, whereas it also contributes to regulation of transcription and translation. Cnot3 is a scaffold component of the CCR4-NOT complex and is essential for the integrity of the complex; loss of Cnot3 leads to depletion of whole complex. While the significance of cytokine mRNA degradation in limiting inflammation has been established, the roles of CCR4-NOT complex-mediated in ALI remain elusive.The effects of Cnot3 haploinsufficiency in the pathology and cytokine expression were analyzed in the mouse lungs of acid aspiration-induced acute lung injury. The decay rate and transcription activity of cytokine mRNAs under Cnot3 heterozygous deletion were analyzed in lipopolysaccharide (LPS) -stimulated mouse embryonic fibroblasts (MEFs).Tamoxifen-induced heterozygous deletion of Cnot3 in adult mice (Cnot3 Hetz) did not show body weight loss or any apparent abnormality. Under acid aspiration-induced acute lung injury, Cnot3 Hetz mice exhibited increased pulmonary edema, worse lung pathologies and more severe inflammation compared with wild type mice. mRNA expression of pro-inflammatory genes Il1b and Nos2 were significantly upregulated in the lungs of Cnot3 Hetz mice. Consistently, mRNA expression of Il1b and Nos2 was upregulated in LPS-stimulated Cnot3 Hetz MEFs. Mechanistically, while heterozygous depletion of Cnot3 stabilized both Il1b and Nos2 mRNAs, the nascent pre-mRNA level of Il1b was upregulated in Cnot3 Hetz MEFs, implicating Cnot3-mediated transcriptional repression of Il1b expression in addition to destabilization of Il1b and Nos2 mRNAs. PU.1 (Spi1) was identified as a causative transcription factor to promote Il1b expression under Cnot3 haploinsufficient conditions.CNOT3 plays a protective role in ALI by suppressing expression of pro-inflammatory genes Il1b and Nos2 through both post-transcriptional and transcriptional mechanisms, including mRNA stability control of Spi1.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (44)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....