Complement C5a Induces Renal Injury in Diabetic Kidney Disease by Disrupting Mitochondrial Metabolic Agility

System Male 0301 basic medicine Cells 610 Expression Complement C5a Mice, Transgenic Kidney Diabetes Mellitus, Experimental Rats, Sprague-Dawley Plasma Mice 03 medical and health sciences 616 Animals Humans Diabetic Nephropathies Profiles Receptor, Anaphylatoxin C5a Cells, Cultured Heart C3A Fibrosis Mitochondria Rats 3. Good health Diabetes and Metabolism Mice, Inbred C57BL 2712 Endocrinology 2724 Internal Medicine Cardiolipin Protects Energy Metabolism Receptor Signal Transduction
DOI: 10.2337/db19-0043 Publication Date: 2019-10-18T02:05:11Z
ABSTRACT
The sequelae of diabetes include microvascular complications such as diabetic kidney disease (DKD), which involves glucose-mediated renal injury associated with a disruption in mitochondrial metabolic agility, inflammation, and fibrosis. We explored the role of the innate immune complement component C5a, a potent mediator of inflammation, in the pathogenesis of DKD in clinical and experimental diabetes. Marked systemic elevation in C5a activity was demonstrated in patients with diabetes; conventional renoprotective agents did not therapeutically target this elevation. C5a and its receptor (C5aR1) were upregulated early in the disease process and prior to manifest kidney injury in several diverse rodent models of diabetes. Genetic deletion of C5aR1 in mice conferred protection against diabetes-induced renal injury. Transcriptomic profiling of kidney revealed diabetes-induced downregulation of pathways involved in mitochondrial fatty acid metabolism. Interrogation of the lipidomics signature revealed abnormal cardiolipin remodeling in diabetic kidneys, a cardinal sign of disrupted mitochondrial architecture and bioenergetics. In vivo delivery of an orally active inhibitor of C5aR1 (PMX53) reversed the phenotypic changes and normalized the renal mitochondrial fatty acid profile, cardiolipin remodeling, and citric acid cycle intermediates. In vitro exposure of human renal proximal tubular epithelial cells to C5a led to altered mitochondrial respiratory function and reactive oxygen species generation. These experiments provide evidence for a pivotal role of the C5a/C5aR1 axis in propagating renal injury in the development of DKD by disrupting mitochondrial agility, thereby establishing a new immunometabolic signaling pathway in DKD.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (65)
CITATIONS (74)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....