Conversion of native rangelands into cultivated pasturelands in subtropical ecosystems: Impacts on aggregate-associated carbon and nitrogen
2. Zero hunger
0401 agriculture, forestry, and fisheries
04 agricultural and veterinary sciences
15. Life on land
DOI:
10.2489/jswc.73.2.156
Publication Date:
2018-03-03T16:45:13Z
AUTHORS (6)
ABSTRACT
Soil organic carbon (SOC) plays a critical role in the sustainability of grazingland ecosystems around the world. However, maintaining or increasing SOC levels remains a major challenge, particularly in subtropical regions where coarse-textured soils predominate. This study evaluated the long-term (>20 years) impacts of grazingland intensification (conversion of native rangelands into more intensively managed silvopasture and sown pasture) on SOC and nitrogen (N) responses in particle size/density fractions. Treatments consisted of field replicated (n = 2) experimental sites that represented a gradient of intensification ranging from native rangelands (low intensification), pine (Pinus spp.)-bahiagrass (Paspalum notatum) silvopasture (moderate intensification), and bahiagrass pastures (high intensification). Soil organic C and N increased in response to the conversion of native rangelands into more intensively managed grazinglands, but no difference was observed in total SOC and N between silvopasture and sown pasture. Despite the positive impact of intensification on SOC and N pools, accumulation occurred primarily in more labile fractions. For instance, at the 0 to 10 cm depth, light-free C (LF-C) increased from 12.9 g kg−1 soil in the native rangeland to 24.7 g kg−1 soil in the sown pasture. Largest differences between the ecosystems were observed at the 10 to 20 cm depth where LF-C increased by as much as 170% following the conversion from native rangelands to sown pasture. Similar responses were also observed for N. Grazingland intensification showed no effect on soil aggregation, but SOC and N associated with macroaggregates (2,000 to 250 μm) increased with intensification. Results indicate that grazingland intensification promoted SOC and N accumulation, primarily through an increase in the LF fraction.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (43)
CITATIONS (12)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....