FingerDTA: A Fingerprint-Embedding Framework for Drug-Target Binding Affinity Prediction

0301 basic medicine 03 medical and health sciences Electronic computers. Computer science drug-target binding affinity new drug discovery fingerprint QA75.5-76.95
DOI: 10.26599/bdma.2022.9020005 Publication Date: 2022-11-24T21:47:10Z
ABSTRACT
Many efforts have been exerted toward screening potential drugs for targets, and conducting wet experiments remains a laborious and time-consuming approach. Artificial intelligence methods, such as Convolutional Neural Network (CNN), are widely used to facilitate new drug discovery. Owing to the structural limitations of CNN, features extracted from this method are local patterns that lack global information. However, global information extracted from the whole sequence and local patterns extracted from the special domain can influence the drug-target affinity. A fusion of global information and local patterns can construct neural network calculations closer to actual biological processes. This paper proposes a Fingerprint-embedding framework for Drug-Target binding Affinity prediction (FingerDTA), which uses CNN to extract local patterns and utilize fingerprints to characterize global information. These fingerprints are generated on the basis of the whole sequence of drugs or targets. Furthermore, FingerDTA achieves comparable performance on Davis and KIBA data sets. In the case study of screening potential drugs for the spike protein of the coronavirus disease 2019 (COVID-19), 7 of the top 10 drugs have been confirmed potential by literature. Ultimately, the docking experiment demonstrates that FingerDTA can find novel drug candidates for targets. All codes are available at http://lanproxy.biodwhu.cn:9099/mszjaas/FingerDTA.git.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (31)
CITATIONS (17)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....