Tools of the trade: Estimating time-varying connectivity patterns from fMRI data

bepress|Life Sciences|Neuroscience and Neurobiology Brain Diseases Brain Mapping 03 medical and health sciences 0302 clinical medicine PsyArXiv|Neuroscience Brain Humans Original Manuscript Neuroimaging Magnetic Resonance Imaging Neuroscience
DOI: 10.31234/osf.io/mvqj4 Publication Date: 2020-03-27T19:21:32Z
ABSTRACT
Given the dynamic nature of the brain, there has always been a motivation to move beyond “static” functional connectivity, which characterizes functional interactions over an extended period of time. Progress in data acquisition and advances in analytical neuroimaging methods now allow us to assess the whole brain’s dynamic functional connectivity (dFC) and its network-based analog, dynamic functional network connectivity (dFNC) at the macroscale (mm) using fMRI. This has resulted in the rapid growth of analytical approaches, some of which are very complex, requiring technical expertise that could daunt researchers and neuroscientists. Meanwhile, making real progress toward understanding the association between brain dynamism and brain disorders can only be achieved through research conducted by domain experts, such as neuroscientists and psychiatrists. This article aims to provide a gentle introduction to the application of dFC. We first explain what dFC is and the circumstances under which it can be used. Next, we review two major categories of analytical approaches to capture dFC. We discuss caveats and considerations in dFC analysis. Finally, we walk readers through an openly accessible toolbox to capture dFC properties and briefly review some of the dynamic metrics calculated using this toolbox.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....