Combination of Click Chemistry and Enzymatic Ligation for Stable and Efficient Protein Immobilization for Single-Molecule Force Spectroscopy
Force Spectroscopy
DOI:
10.31635/ccschem.021.202100779
Publication Date:
2021-02-17T15:24:17Z
AUTHORS (6)
ABSTRACT
Open AccessCCS ChemistryRESEARCH ARTICLE1 Feb 2022Combination of Click Chemistry and Enzymatic Ligation for Stable Efficient Protein Immobilization Single-Molecule Force Spectroscopy Shengchao Shi, Ziyi Wang, Yibing Deng, Fang Tian, Qingsong Wu Peng Zheng Shi State Key Laboratory Coordination Chemistry, Biomedicine Innovation Center (ChemBIC), School Chemical Engineering, Nanjing University, 210023 , Wang Deng Tian *Corresponding author: E-mail Address: [email protected] https://doi.org/10.31635/ccschem.021.202100779 SectionsSupplemental MaterialAboutAbstractPDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareFacebookTwitterLinked InEmail immobilization is an essential method both basic applied research protein, covalent, site-specific attachment the most desirable strategy. Classic methods typically rely on a heterobifunctional cross-linker, such as N-hydroxysuccinimide (NHS)-linker-maleimide, or similar two-step process. It utilizes amino-reactive NHS thiol-reactive maleimide conjugate protein solid support. However, chemical susceptible hydrolysis during storage handling, reacts nonspecifically with all cysteines available in leading inconsistent result. To solve these problems, we have developed by combining strain-promoted azide–alkyne cycloaddition (SPAAC) click reaction OaAEP1(C247A)-based enzymatic ligation. The was demonstrated successful enhanced green fluorescent (eGFP), which visualized imaging. Moreover, correct folding stability immobilized were verified atomic force microscopy-based single-molecule spectroscopy (AFM-SMFS) measurement high success rate (89%). Finally, strength 1,2,3-triazole linkage from azide-dibenzocyclooctyne (DBCO)-based SPAAC quantified ultrahigh rupture <1.7 nN. Thus, this stable, efficient, can be used many challenging systems, especially SMFS studies. Download figure PowerPoint Introduction crucial characterization application proteins,1,2 study mechanism, detection, study.3–7 Among different methodologies, covalent bonding desirable, it offers reliable robust attachment. This strategy relies cross-linking reagent that connect support through amino carboxyl functional group surface lysines.1,8 Perhaps commonly glass (NHS) ester. notorious unintended hydrolysis. extra care must paid its repeated usages keep effective, result will obtained if handled inappropriately. Also, (Mal) cysteines/lysines interest (POI) uncontrolled way. overcome issues, combine OaAEP1-based ligation immobilization. chemistry attracted increasing attention biology, chemistry, engineering. water yield, has been labeling immobilization.9–11 direct requires modification incorporation nonnatural acids target limits yield application.12,13 ligase also purposes, sortase A butelase 1.14–16 bottlenecks are low efficiency poor accessibility enzymes.17 Recently, transpeptidase OaAEP1(C247A)-mediated polyprotein construction immobilization.18 Here, combined N3-dibenzocyclooctyne immobilize imaging unfolding experiments.18–20 chemicals easier handling results. quantified, showing above 1700 pN, provides general measuring stable proteins bonds chemistry. Experimental Methods All reagents purchased commercial suppliers accordingly. Imidazole-1-sulfonyl azide hydrochloride (ImSO2N3·HCl; Abydos Scientific, Nanjing, Jiangsu, China), DBCO-(polyethylene glycol)4-Mal (DBCO-PEG4-Mal; Biocone, Chengdu, Sichuan, 4-(N-maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester, sodium salt (sulfo-SMCC; Thermo Fisher, Rockford, IL) stored dark. noted ImSO2N3·HCl hygroscopic slowly produce hydrazoic acid, sensitive explosive. Care taken prevent occurring. Microporous membrane filters (0.22 0.45 μm) further purification (Jet Biofil, Guangzhou, Guangdong, China). genes eGFP, Coh, XDoc, GB1, I27, SdrG, Fgβ Genscript (Nanjing, OaAEP1(C247A) cysteine 247 alanine mutant asparaginyl endoproteases 1 Oldenlandia affinis, abbreviated OaAEP1. I27 27th immunoglobulin domain human cardiac titin. GB1 B1 Streptococcal G.21 [Coh-XDoc] type III cohesion dockerin-X module complex Ruminococcus flavefaciens.22 SdrG serine-aspartic (SD)-repeat G, cell adhesin Staphylococcus epidermidis, N terminus β chain fibrinogen.23 overexpressed Escherichia coli BL21(DE3) cells. details found Supplementary Information. For AFM-SMFS experiment, Nanowizard4 AFM used. cantilevers (MLCT-Bio-DC; Bruker, Camarillo, CA) calibrated buffer thermal noise measure spring constant. experiments performed under constant pulling velocity 1000 nm/s. data first filtered using processing software (JPK, Berlin, Germany). More regarding selection analysis Supporting Results Discussion principle our shown Figure 1. First, replaces (Figures 1a 1b). Starting amino-silanized coverslip, N3 functionalized between –NH2 (step 1).24 Then, DBCO-PEGn-Mal reacted adds Mal 2). instead randomly reacting POI, peptide including elastin-like polypeptide (ELP)n spacer, glycine-leucine-ELP-cysteine (GL-ELP-C) 3).25 GL tag, recognized several transpeptidases, OaAEP1 Sortase A. These endopeptidases function ligases corresponding tag [asparagine-glycine-leucine (NGL) OaAEP1, leucine-proline-glutamic acid-threonine-glycine (LPETG) A] 4).18,26 | (a) classic uses sulfo-NHS-linker-Mal (SMCC) surface. (b) Our method: shelf-stable ImSO2N3 group. –N3, followed addition GL-ELP-C. POI NGL functionalized-GL catalyzed allow easy confirmation, eGFP model clear pattern slides 2a 2b Information Figures S1–S4). preparation protocol provided solution added GL-functionalized slide incubated hand pipetting. washed high-salt deionized remove nonspecific bound dried. air, showed edge formed covalently attached (Figure 2a). In addition, automatic microarrays machine, 3 × array air 2b). fluorescence image no difference dry sample ( S4a). Under same conditions, droplet without much weaker signal S4b). transformation amines analyzed azide-functionalized surfaces SMCC react unreacted amine last step control experiment. And subsequent steps method, only After quantification ImageJ (National Institutes Health, Bethesda, MD) normalization new 5% intensity per area indicating ∼95% (see 2c, Information, Table S1). 2 Verification measurement. Immobilized pipetting shows signal, whose boundary indicated dashed line bright-field S3). microarray, expected fluorescence. (c) three methods, SMCC, determining azide, normalized. histograms show (green) (black) (d) schematic how measures eGFP. (e) Force-extension curves signals (curves 2, green), while observed outside 4). (f) Diagram relationship F ΔLc (one-step green, n = 238; purple, 30) (in black). confirm manipulates single molecule27–31 complexes mechanically,32–34 (un)fold protein,35–38 break molecular interactions,39–41 chemically bond.42–48 previous design, cohesin (Coh) fused binds Xmod-dockerin (XDoc) site specifically reversibly ∼600 pN.2,49 tip GB1-XDoc marker contour length increment (ΔLc) 18 nm.21 By pressing glass, captured interaction. moving up vertically at (1000 nm/s), stretched unfolded 2d). ruptured, moved another place repeat probing droplet-covered AFM-SMFS, force-extension peaks observed. Fitting curve worm-like model, besides peak nm, additional ∼80 nm 2e, 1, green). agrees theoretical results full extension (227 acids). 96 ± 13 pN (average standard deviation, 238) 84 2f).50 scenario observed, findings GFP (curve We probed control. As expected, containing detected prove well-folded proper demonstrate ability large proteins, domain, I27. characterized ∼220 ∼28 (pulling speed: nm/s).35,51 built Coh-(GB1)2-(I27)8-NGL polyprotein, more than 10 domains. then experiment GB1-XDoc-functionalized 3a). Its sawtooth-like 11 peaks, 8 red) blue), respectively 3b). 228 32 (n 524) 212 37 217) 3c 3d). values comparable NHS(SMCC)-based S5). Statistically, 48 out 54 (89%) succeeded pick-up ratio (<1%). Coh-(GB1)2-(I27)8 method. unfolded. designed. colored red marked star, blue star. (c), (d), respectively. mechanical system, triazole N3-DBCO reaction, quantified. test high-force limit, protein–protein interaction pair [SdrG-Fgβ] over 2000 S6),23 pair. Fgβ-(GB1)2-NGL SdrG-NGL them system 4a). two (213 34 318, 4b 4c), detachment average 1717 185 313) 4d, star), could withstand forces ∼1700 pN. statistical value one strongest “click bond” measured so far.52–54 4 Schematic 1,2,3 complex. (blue star) (rupture) (red star). (c d) 213 (d). Conclusion work, combination efficient Although compared NHS-based good Most ImSO2N3, weeks,24 convenient experimental procedure better consistent result, AFM-SMFS. Furthermore, nN-level suitable characterizing systems. platform investigate bond. includes materials, supplementary notes, S1, S1–S6. Conflict Interest There conflict report. Funding work financially supported National Natural Science Foundation China (grant nos. 21771103 21977047), Fundamental Research Funds Central Universities (no. 14380205), Jiangsu Province (nos. BK20200058 BK20202004). Acknowledgments authors wish acknowledge Prof. Zijian Guo, Thomas Perkins, Michael Nash, Dr. Lukas Milles their inspiring discussions, Jie Li his help Ying Liu, Deju Ye, Miss Yue Zhang imaging, Pang Furui Jin preparation. References Chen Y. X.; Triola G.; Waldmann H.Bioorthogonal Site-Specific Labeling Surface Proteins.Acc. Chem. Res.2011, 44, 762–773. Google Scholar 2. Liu H. P.; Ta D. T.; Nash M. A.Mechanical Polyprotein Assembly Using SFP Sortase-Mediated Domain Oligomerization Studies.Small Methods2018, 1800039. 3. Walder R.; LeBlanc A.; Van Patten W. J.; Edwards Greenberg J. Adhikari Okoniewski S. Sullan R. Rabuka D.; Sousa C.; Perkins T. T.Rapid Characterization Mechanically Labile Alpha-Helical Enabled Bioconjugation.J. Am. Soc.2017, 139, 9867–9875. 4. Popa I.; Berkovich Alegre-Cebollada Badilla C. L.; Rivas-Pardo Taniguchi Y.; Kawakami M.; Fernandez M.Nanomechanics HaloTag Tethers.J. Soc.2013, 135, 12762–12771. 5. Cheng F.; Q.; W.; He Q.Site-Specific Covalent His-Tagged Proteins via Vinyl Sulfone-Imidazole Coupling.Langmuir2019, 35, 16466–16475. 6. Zakeri B.; Fierer O.; Celik E.; Chittock E. Schwarz-Linek U.; Moy V. Howarth M.Peptide Tag Forming Rapid Bond Protein, Engineering Bacterial Adhesin.Proc. Natl. Acad. Sci. U. A.2012, 109, E690–E697. 7. Fu H.; Jiang Yang Scheiflinger Wong Springer A.Flow-Induced Elongation von Willebrand Factor Precedes Tension-Dependent Activation.Nat. Commun.2017, 8, 324. 8. Zimmermann Nicolaus Neuert Blank K.Thiol-Based, Biomolecules Experiments.Nat. Protoc.2010, 5, 975–985. 9. Jewett Bertozzi R.Cu-Free Cycloaddition Reactions Biology.Chem. Soc. Rev.2010, 39, 1272–1279. 10. Eeftens van der Torre Burnham Dekker C.Copper-Free Attachment Magnetic Tweezers.BMC Biophys.2015, 9–15. 11. Synakewicz Bauer Rief Itzhaki L. S.Bioorthogonal Protein-DNA Conjugation Spectroscopy.Sci. Rep.2019, 9, 13820–13830. 12. Schultz P. G.Adding New Chemistries Genetic Code.Annu. Rev. Biochem.2010, 79, 413–444. 13. Raliski B. K.; Howard Young D.Site-Specific Unnatural Amino Acids.Bioconj. Chem.2014, 25, 1916–1920. 14. Bellucci Bhattacharyya Chilkoti A.A Noncanonical Function Enables Small Molecules Lysine Residues Proteins.Angew. Int. Ed.2015, 54, 441–445. 15. Garg S.; Singaraju G. Yengkhom Rakshit S.Tailored Polyproteins Sequential Staple Cut.Bioconj. Chem.2018, 29, 1714–1719. 16. P.Verification Molecular Dynamics Simulations.Chem. Commun.2020, 56, 3943–3946. 17. Dorr R.A General Strategy Evolution Bond-Forming Enzymes Yeast Display.Proc. A.2011, 108, 11399–11404. 18. Yuan Chong P.Enzymatic Biosynthesis Verified Level.Nat. Commun.2019, 10, 2775–2785. 19. Nguyen K. Tam Lescar B.Engineering Catalytically Recombinant Ligase.J. 5351–5358. 20. Rehm F. Harmand Yap Durek Craik Ploegh L.Site-Specific Catalyzed Single Soc.2019, 141, 17388–17393. 21. Cao Lam H.Nonmechanical Can Have Significant Mechanical Stability.Angew. Ed.2006, 45, 642–645. 22. Bernardi Durner Schoeler Malinowska Carvalho Bayer Luthey-Schulten Z.; Gaub A.Mechanisms Nanonewton Mechanostability Complex Revealed Simulations Spectroscopy.J. 14752–14763. 23. Schulten C.Molecular Mechanism Extreme Pathogen Adhesin.Science2018, 359, 1527–1533. 24. Goddard-Borger Stick V.An Efficient, Inexpensive, Shelf-Stable Diazotransfer Reagent: Imidazole-1-Sulfonyl Azide Hydrochloride.Org. Lett.2007, 3797–3800. 25. Ott Jobst E.Elastin-like Polypeptide Linkers Spectroscopy.ACS Nano2017, 11, 6346–6354. 26. Ge Zhao R.Enzyme-Mediated Intercellular Proximity Detecting Cell–Cell Interactions.J. 1833–1837. 27. Krieg Fläschner Alsteens Roos Wuite Gerber Dufrêne Müller J.Atomic Microscopy-Based Mechanobiology.Nat. Phys.2019, 41–57. 28. X.Single Molecule Mechanochemistry Macromolecules.Prog. Polym. Sci.2003, 28, 1271–1295. 29. Xing Song Z. Huang F.Mechanochemistry Interlocked Poly[2]catenane: From Bulk Gel.CCS Chem.2020, 513–523. Abstract, 30. H.Harvesting Work Folding-Based Engines: Mechanochemical Cycles Macroscopic Devices.CCS Chem.2019, 138–147. 31. Yu Qian Cui S.Reentrant Variation Single-Chain Elasticity Polyelectrolyte Induced Monovalent Salt.J. Phys. Lett. B2017, 121, 4257–4264. 32. Hinterdorfer F.Detection Localization Recognition Events Atomic Microscopy.Nat. Methods2006, 3, 347–355. 33. Infante Stannard Board Rico-Lastres Rostkova Beedle Lezamiz Gulaidi Breen Panagaki Sundar Rajan V.; Shanahan Roca-Cusachs Garcia-Manyes S.The Stability Regulates Their Translocation Rate into Cell Nucleus.Nat. 15, 973–981. 34. Hickman Cooper Paci Brockwell J., Gating TonB-Dependent Transporters Substrate-Specific Forced Remodelling.Nat. 14804–14815. 35. Gautel Oesterhelt E.Reversible Unfolding Individual Titin Immunoglobulin Domains AFM.Science1997, 276, 1109–1112. 36. Scholl N.; Marszalek E.Unraveling Pathways Multidomain Protein: Phosphoglycerate Kinase.Biophys. J.2018, 115, 46–58. 37. Borgia Williams Clarke J.Single-Molecule Studies Folding.Annu. Biochem.2008, 77, 101–125. 38. Law Carl Harper Dalhaimer Speicher Discher E.Cooperativity Tandem Spectrin Repeats.Biophys. J.2003, 84, 533–544. 39. Goktas Luo Bergues-Pupo Lipowsky Vila Verde G.Molecular Mechanics Coiled Coils Loaded Shear Geometry.Chem. Sci.2018, 4610–4621. 40. H.-j.; Ju Lu Z.-y.; Chi S.Towards Unveiling Exact Structure Amorphous Red Phosphorus Studies.Angew. Ed.2019, 58, 1659–1663. 41. Rico Russek Gonzalez Grubmuller Scheuring S.Heterogeneous Rate-Dependent Streptavidin-Biotin Unbinding High-Speed Atomistic Simulations.Proc. A.2019, 116, 6594–6601. 42. Grandbois Beyer Clausen-Schaumann E.How Strong Is Bond?Science1999, 283, 1727–1730. 43. Xue W.Quantifying Thiol–Gold Interactions towards Strength Control.Nat. Commun.2014, 4348–4356. 44. Ma Nie Zuo P.Single-Molecule Reveals Iron-Ligand Bonds Modulate Different Modes.J. Lett.2019, 5428–5433. 45. Gao Lei Zhu Qin Y.Maleimide–Thiol Adducts Stabilized Stretching.Nat. 310–319. 46. Giganti Yan J.Disulfide Isomerization Enable Mode Elasticity.Nat. Commun.2018, 185. 47. Pill East Marx H.Mechanical Activation Drastically Accelerates Amide Hydrolysis, Matching Enzyme Activity.Angew. 9787–9790. 48. Ding Fe–N Multiple Rupture 2Fe2S Cluster MitoNEET Monomer.Anal. 92, 14783–14789. 49. Stahl Fried Slutzki Barak E.Single-Molecule Dissection High-Affinity Cohesin–Dockerin Complex.Proc. 20431–20436. 50. Dietz Bertz Schlierf Berkemeier Bornschlogl Junker M.Cysteine Spectroscopy.Nat. Protoc.2006, 80–84. 51. Carrion-Vazquez Oberhauser Fowler Broedel M.Mechanical Comparison.Proc. A.1999, 96, 3694–3699. 52. Khanal Long Shahbazian-Yassar S.Evidence Splitting 1,2,3-Triazole Alkyne Low Presence Other Bonds.Chem. Eur. J.2016, 22, 9760–9767. 53. Schütze Holz Lüning Hartke B.Pinpointing Embedding Mechanophore Macrocycle.Angew. 2556–2559. 54. Jacobs Schneider G.Mechanical Reversibility Strain-Promoted Azide–Alkyne Reactions.Angew. Ed.2016, 55, 2899–2902. Previous articleNext article FiguresReferencesRelatedDetails Issue AssignmentVolume 4Issue 2Page: 598-604Supporting Copyright & Permissions© 2021 Chinese SocietyKeywordsclick chemistryenzymatic ligationprotein immobilizationsingle-molecule spectroscopyAcknowledgmentsThe Downloaded 2,008 times PDF DownloadLoading ...
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (63)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....