An Organic–Inorganic Hybrid Material Based on Benzo[ghi]perylenetri-imide and Cyclic Titanium-Oxo Cluster for Efficient Perovskite and Organic Solar Cells
Imide
DOI:
10.31635/ccschem.021.202100825
Publication Date:
2021-04-07T03:56:32Z
AUTHORS (10)
ABSTRACT
Open AccessCCS ChemistryCOMMUNICATION1 Mar 2022An Organic–Inorganic Hybrid Material Based on Benzo[ghi]perylenetri-imide and Cyclic Titanium-Oxo Cluster for Efficient Perovskite Organic Solar Cells Zhou Zhang†, Faming Han†, Jie Fang†, Chaowei Zhao, Shuai Li, Yonggang Wu, Yuefeng Zhang, Shengyong You, Binghui Wu Weiwei Li Zhang† Institute of Applied Chemistry, Jiangxi Academy Sciences, Nanchang 330096 College Chemistry Environmental Science, Hebei University, Baoding 071002 , Han† State Key Laboratory Physical Solid Surfaces, Pen-Tung Sah Micro-Nano Science Technology, Chemical Engineering, Xiamen 361005 Guangxi Low Carbon Energy Materials, Pharmaceutical Normal Guilin 541004 Fang† Zhao *Corresponding authors: E-mail Address: [email protected] Zhang You Beijing Advanced Innovation Center Soft Matter Engineering Composites, University 100029 https://doi.org/10.31635/ccschem.021.202100825 SectionsSupplemental MaterialAboutAbstractPDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareFacebookTwitterLinked InEmail organic solar cells usually require electron-transport interlayers efficiently transport electrons from the photoactive layer metal electrode. In general, pure or inorganic materials are applied into interlayers, but organic–inorganic hybrid have been rarely reported this application. work, we report using first titanium-oxo cluster-based as interlayer material by introducing large π-conjugated benzo[ghi]perylenetriimides an part via a simple ligand-exchange reaction. This new showed excellent solubility, well-aligned energy levels, electron mobilities, enabling its great potential application in such perovskite cells, providing high power conversion efficiencies <20% 16%, respectively. Therefore, claim that our present work introduces class exhibit promising electronics. Download figure PowerPoint Introduction Titanium oxide (TiO2) nanomaterials commonly adopted layers (ETLs) different thin-film dye-sensitized (DSSCs), (PSCs), (OSCs).1–10 The suitable level alignment between TiO2 light-harvesting semiconductors endows ability extract block holes with reducing series recombination.11–14 Meanwhile, photovoltaics is still inhibited low mobility rough surface amount defects,15–17 which unfavorable ohmic contact organic/inorganic layers. Consequently, causes severe accumulation recombination at interface, resulting (PCEs) evident hysteresis planar PSCs.18 To smooth interface reduce defect layer, some materials, including perylene diimide (PDI) derivative PDI2,19 well-known fused-ring acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITIC),20 conjugated polymer electrolyte,21 were introduced active layers, improved PSCs OSCs. However, these difficulty forming tight perfect levels TiO2. developed solution-processed could be compatible both act universal interfacial We used Ti-oxo clusters (TOCs) component construct material. As molecular analogue TiO2, TOCs atomically precise structures attracted increasing attention due their constructing assemblies models studying correlation structure function.22–25 date, mainly photocatalysis, host–guest ions selectivity, supporting single-atom site/metallic nanomaterials, porous materials.26–38 Although chromophore appending exhibited efficient communication considerable photocurrent model DSSCs,39–41 there only few reports about high-performing photovoltaics.42,43 One challenge how attach dyes onto since trial-and-error one-pot approach relatively inefficient bulky dye ligands protecting TOCs.44 A feasible way functionalize as-synthesized ligand exchange labile sites.45–47 protocol has proven rather ripe ligands,48–50 photoelectronic properties attached reported. previous synthesized stable cyclic (CTOCs) ligated –OH –COOH units, they highly exchangeable other alcohols.37 finding intrigued us introduce rational design. Herein, construction based benzo[ghi]perylenetriimide ( BPTI-OH, Supporting Information Scheme S1) TOC CTOC-3) (Scheme 1) it BPTI unit π-extended PDI exhibits deep frontier strong crystallinity, potentially electron-transporting material.51 targeted CTOC-3-BPTI was simply BPTI-OH ethylene glycolates CTOC-3. then OSCs, exhibiting enhanced PCEs over 20% 16%. also advanced techniques study physical material, revealing outstanding performance tune function cells. 1 | Synthetic route CTOC-3-BPTI. Results Discussion chemical CTOC-3-BPTI, synthetic depicted 1. hierarchical CTOC-3 simplified eight Ti4 cycles clarity. overall involving alcohol site shown Figure S1. detailed procedures presented Information. involatile monocoordinated glycol initially replaced volatile isopropanol recrystallization process, yielding CTOC-3- i OPr. Powder X-ray diffraction (XRD) indicated crystal maintained after S2). product mixed CH2Cl2 solution stirred room temperature. reaction process monitored UV–vis absorption spectra. 1a, when equiv OPr treated 17 intensity peaks significantly reduced h. After 24 h, onset spectra red-shifted 486 509 nm. Besides, ratio second peak (∼434 nm) third (∼465 enhanced. consistent change film S3), indicating aggregation during process. continuously 48 no apparent 72 finished Column chromatography purify yellow solid. It solubility nonpolar polar solvents n-hexane (Figure 1b), facile photovoltaic devices. (a) Reaction (b) molar coefficient CH2Cl2, n-hexane. (c) 1H NMR chloroform-d1. proton nuclear magnetic resonance (1H NMR) 1c, shifts 9.1–10.3 ppm assigned aromatic Hs upshifted 8.5–9.6 integral H atoms those C–CH2CH2-O CTOC 16:1, BPTI:CTOC S4). confirmed further thermogravimetric analyses (TGA, S5). tried obtain single-crystal XRD perform mass spectroscopy data deduce convincing structural information, attempts failed. coexistence diffusion-ordered (DOSY), where signals unified diffusion (D) 1.51 × 10−10 m2/s (log D = −9.82) S6). When added volume methanol-d4 (50 μL) unload all BPTI, unique dissociated two individual species 1.23 −9.91) 2.45 −9.61), corresponding respectively S7). These measurements illustrated equilibrium existed utilized enough time, obtained, decomposed volumes alcohol. demonstrated device configuration fluorine-doped tin (FTO)/TiO2/ CTOC-3-BPTI/perovskite/Spiro/Au 2a). fabrication described cation Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3, cesium formamidinium methylammonium lead halide [(CsFAMA)PbX3] layer. prepared devices without comparison. current density–voltage (J–V) curves best performing 2b S8, parameters summarized Table PSC directly deposited PCE 16.02%. interlayer, open-circuit voltages (Vocs) short-circuit densities (Jscs) slightly enhanced, fill factors (FFs) almost unchanged so increased 16.82% 17.21%. Surprisingly, simultaneously improved, boosting 20.14%. Jscs reflected incident photon-to-current (IPCEs, 2c), photoresponse range 300–800 Moreover, phenomena CTOC-contained S8), unlike interlayer. core responsible suppression. histograms 30 2d revealed reproducibility fabricated study. 2 PSCs. Comparison reverse scan J–V IPCE interlayers. (d) Histograms forward scans among Photovoltaic Parameters Best CTOC-3, Interlayers Voc (V) Jsc (mA/cm2) FF (%) Without 1.022 21.60 72.57 16.02 1.070 21.78 72.13 16.82 1.035 22.80 72.96 17.21 1.119 23.81 75.58 20.14 Next, studied origination Jsc, Voc, First, scanning microscopy (SEM, Figures S9 S10) (XRD, S11) measurement found similar grain size varied interface. Kelvin probe force (KPFM) difference (CPD), inherently correlated variation (Figures 3a–3c, S12–S15).52–54 Measured same tip, CPD −2.3 mV bare 86.2 CTOC-3-BPTI-modified elevation ∼90 mV. For comparison, 30.8 9.3 3c). results indicate altered function, partially explaining possible intramolecular charge transfer amorphous nature generated dense S2), function. led localize middle underlayer (−4.10 eV) (CsFAMA)PbX3 (−3.93 eV), promoting S16). clear suppression CTOC-containing might correlate trap passivation, optimized 3 (a b) Two-dimensional topography spatial maps CTOC-3-BPTI/TiO2. TRPL films substrates. steady-state time-resolved photoluminescence (TRPL) evaluate charge-transfer kinetics across TiO2/interlayer/perovskite interfaces. primary PL 760 presence ETL, especially S17. associated effective ETL. From measurement, average lifetime cast FTO 59.9 ns, while value 37.2 ns FTO/TiO2 16.7 FTO/TiO2/ 3d). supported significant Additionally, charge-carrier characterized electrochemical impedance (EIS). Nyquist plots subjected one sun illumination bias testing S18. introduction resulted increase observed arcs intermediate frequency region 1000 kHz. Since perovskite/hole-selective interfaces identical cases, higher belongs more through lower related recombination. All synergistically contributed OSCs ITO/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS)/poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)] (PM6):2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (Y6)/ CTOC-3-BPTI/Ag. electrolyte 2,9-bis[3-(dimethyloxidoamino)propyl]anthra[2,1,9-def:6,5,10-d′e′f′]diisoquinoline-1,3,8,10(2H,9H)-tetrone PDINO) comparison.55 OSC 4a 4b. obtained 15.43% than PDINO (15.84%), 4c 2. FFs, although external quantum (EQE, 4d). CTOC-3-BPTI/ double applied, 16.71% 27.22 mA/cm2, 0.845 V, 72.66% (Table 2). 4 PM6, Y6, PDINO. Device architecture OSC. EQE single PDINO, CTOC-3-BPTI/PDINO EH, 2-ethylhexyl. Single Double Respectively Calculated μe (cm2/V S) 0.823 (0.831) 25.75 (25.57) 24.49 74.76 (73.57) 15.84 (15.64) 0.00317 0.820 (0.821) 26.20 (25.98) 25.20 71.79 (71.68) 15.43 (15.30) 0.0212 (0.837) (26.64) 25.93 72.66 (73.75) 16.71 (16.47) 0.0894 Values brackets six independent investigated fabricating electron-only ITO/ZnO/Y6/ETL/Ag. S19 2, cm2/V S, S remarkable enhancement mobilities able improve electrode.56 Conclusion 16% obtained. attributed tuning injection Also, intend emphasize combining molecule enhance adhesion electrode possibly PCEs. envision oxo-clusters would open avenue available includes general procedure characterization Conflict Interest There conflict interest report. Funding jointly MOST (nos. 2018YFA0208504 2017YFA0204702) NSFC (51773207, 52073016, 5197030531, 21801213) China. Fundamental Research Funds Central Universities (no. XK1802-2), Project Supramolecular Structure Materials sklssm202043), Provincial Department Technology 20192ACB20009, 20192BBEL50026, 20202ACBL213004, 20203BBE53062). Acknowledgments authors thank Prof. Nanfeng Zheng constructive discussion support. References Bai Y.; Mora-Sero I.; De Angelis F.; Bisquert J.; Wang P.Titanium Dioxide Nanomaterials Applications.Chem. Rev.2014, 114, 10095–10130. Google Scholar Hagfeldt A.; Grätzel M.Molecular Photovoltaics.Acc. Chem. Res.2000, 33, 269–277. 3. Varghese O. K.; Paulose M.; Grimes C. A.Long Vertically Aligned Titania Nanotubes Transparent Conducting Oxide Highly Cells.Nat. Nanotechnol.2009, 4, 592–597. 4. Feng S.; Lu H.; Liu Z.; C.; Bo Z.Designing High-Performance A-D-A Fused-Ring Electron Acceptor Noncovalently Conformational Locking Tailoring Its End Groups.Acta Phys. Chim. Sin.2019, 35, 355–360. 5. Geng Y.Crystalline Cooperativity Double-Cable Conjugated Polymers.Acta 1311–1312. 6. B.; Xu Xia D.; Xiao Yang W.Semitransparent Non-Fullerene Acceptors.Acta Sin.2021, 37, 2009056. 7. Jiang X.; W.Simple Acceptors Unfused Core Cells.Chin. Lett.2019, 30, 222–224. 8. W.Ternary Polymer Donor, PCBM Components.Chin. Lett.2020, 31, 865–868. 9. Yan N.; W.Recent Progress Thin-Film Photovoltaics Indoor Application.Chin. 643–653. 10. Kim J. S. Lee H. Ma W.; Gong Heeger A. J.New Architecture High-Efficiency Using Solution-Based Optical Spacer.Adv. Mater.2006, 18, 572–576. 11. Hu Lei P.; Chen T.; Zeng Zhu Dai S.Low-Temperature Situ Amino Functionalization Nanoparticles Sharpens Management Achieving 21% Planar Cells.Adv. Mater.2019, e1806095. 12. Wan Ding D.A Rutile Transport Layer Enhancement Charge Collection Cells.Angew. Int. Ed.2019, 58, 9414–9418. 13. Liang Gao Sun Ning Ye Jin Y.Colloidal Metal Nanocrystals Transporting Layers Solution-Processed Light-Emitting Diodes Cells.Chem. Soc. Rev.2017, 46, 1730–1759. 14. Tan Jain Voznyy O.; Lan Garcia de Arquer F. Fan Quintero-Bermudez R.; Yuan Quan L. Z. Hoogland Sargent E. H.Efficient Stable Contact Passivation.Science2017, 355, 722–726. 15. Zhen L.; G.; Cheng H.-M.Strategies Modifying Boost Cells.ACS Sustain. Eng.2019, 7, 4586–4618. 16. S.Surface Modification Cells.Trends Chem.2020, 148–162. 17. Y.Solution-Processable Oxides/Chelates Electrode Buffer Cells.Energy Environ. Sci.2015, 8, 1059–1091. 18. Hou Baran Stubhan Luechinger N. Hartmeier Richter Min Quiroz Heumueller Matt G. Osvet Forberich Winter Schweizer Spiecker E.; Brabec J.Overcoming Interface Losses Heterojunction Perovskite-Based Mater.2016, 28, 5112–5120. 19. Cai Gurney R. T.Restrained Light-Soaking Reduced Hysteresis Employing Helical Perylene Diimide Interfacial Layer.J. Mater. A2018, 6, 10379–10387. 20. Q.; S.ITIC Surface Achieve Synergistic Planar-Type Efficiency Exceeding 20%.J. A2017, 5, 9514–9522. 21. Choi Park Jeong G.-H.; B. Song M. Woo Y.Combination Polyelectrolyte Inverted-Type Optoelectronic Devices.Adv. Mater.2011, 23, 2759–2763. 22. Coppens Trzop E.Crystallography Properties Polyoxotitanate Nanoclusters.Chem. 9645–9661. 23. Assi Mouchaham Steunou Devic Serre C.Titanium Coordination Compounds: Discrete Complexes Metal-Organic Frameworks.Chem. 3431–3452. 24. Fang W. J.Synthetic Strategies, Diverse Structures Tuneable Polyoxo-Titanium Clusters.Chem. Rev.2018, 47, 404–421. 25. Chakraborty Weinstock I. A.Water-Soluble Titanium-Oxides: Complexes, Clusters Nanocrystals.Coord. Rev.2019, 382, 85–102. 26. Zhuang J.Ag10Ti28-Oxo Containing Single-Atom Silver Sites: Atomic Electronic Properties.Angew. 10932–10935. 27. J.Atomically Precise Multimetallic Semiconductive Nanoclusters Limiting Effects.Angew. Ed.2018, 57, 11252–11256. 28. Dong Kan Y. Q.Self-Assembly Phosphate-Centered Cluster: Discovery Heteroatom Keggin Family.Angew. 17260–17264. 29. J.Isomerism Clusters: Molecular Anatase Model Improved Photocatalytic Activity.Angew. 1320–1323. 30. J.Bandgap Labile Sites Used Ligand Substitution Incorporation.Angew.Chem. Ed.2016, 55, 5160–5165. 31. Matthews P. Luo Wright D. S.Novel Potential Applications Functional Ligand-Modified Cages.Chem. Commun.2016, 52, 11180–11190. 32. King T. S.Structure, Photochemistry Metal-Doped Polyoxotitanium Alkoxide Commun.2014, 50, 12815–12823. 33. J.A 3.6 nm Ti52-Oxo Nanocluster Structure.J. Am. Soc.2016, 138, 7480–7483. 34. Jia Tung Y.Titanium-Oxide Host Exchangeable Guests.J. Soc.2018, 140, 66–69. 35. Long D.-L.; Cronin C.-H.; Y.Water-Soluble Pentagonal-Prismatic Clusters.J. 11097–11100. 36. Becknell Yaghi Angell A.Nanoporous MOF Glasses Accessible Internal Surface.J. 10818–10821. 37. Han Su Lin Tang Teo N.Microporous Ligands.Angew. Ed.2017, 56, 16252–16256. 38. Hong Z.-F.; Y.-R.; G.-J.; Q.-C.; Kong X.-J.; L.-S.; L.-S.Ligand-Dependent Luminescence Lanthanide–Titanium Oxo Clusters.Inorg. Chem.2019, 15008–15012. 39. Huo Cui Q. Study Effect Co-Coordinated Dye Ligands Photocurrent Responses.Inorg. Chem.2018, 7420–7427. 40. Zou J.Molecular Sensitized Oxides Aryl-Amine Anchored 9246–9252. 41. Snoeberger Young K. Allen Crabtree Brudvig Batista V. Benedict B.Interfacial Transfer Functionalized Crystalline Nanoclusters.J. Soc.2012, 134, 8911–8917. 42. W.An Organic-Inorganic Electrolyte Cathode Interlayer Ed.2021, 60, 8526–8531. 43. Fu Cao L.Lead-Doped Models Perovskite-Type PbTiO3 Electron-Transport Eur. J.2020, 26, 6894–6898. 44. J.Fluorescent Hydrogel Generated Conveniently Tetracarboxylate Derivative Titanium(IV) Alkoxide.Inorg. 1623–1629. 45. Rozes Sanchez Oxo-Clusters: Precursors Lego-like Construction Nanostructured Materials.Chem. Rev.2011, 40, 1006–1030. 46. Gunawardene Corrigan Workentin S.Golden Opportunity: Clickable Azide-Functionalized [Au25(SR)18](−) Platform Modifications.J. Soc.2019, 141, 11781–11785. 47. Boles Ling Hyeon Talapin V.The Nanocrystals.Nat. 15, 141–153. 48. J.Acid-Controlled Synthesis Carboxylate-Stabilized Ti44-Oxo Scaling up Preparation, Protecting Ligands, Photophysical Properties.Chem. J.2019, 25, 10450–10455. 49. Zhan Du Y.Functionalization Ti17O24(OiC3H7)20 Catechols: Ligand-Exchange Reactivities.Chem. 14843–14849. 50. Sokolow P.Binding Modes Carboxylate- Acetylacetonate-Linked Chromophores Homodisperse 11695–11700. 51. W.Improving Parallel Perylenetriimide Design.Macromolecules2019, 3689–3696. 52. Chang Marco Y.Working Mechanism Flexible Simplified Architecture.Nano Lett.2015, 6514–6520. 53. Melitz Shen Kummel S.Kelvin Probe Force Microscopy Application.Surf. Sci. Rep.2011, 66, 1–27. 54. Duan Hui Chuong Ou Huang N.High-Efficiency, Hysteresis-Less, UV-Stable Cascade ZnO-ZnS 541–547. 55. Z.-G.; Qi Chi J.Perylene Diimides: Thickness-Insensitive High Performance Sci.2014, 1966–1973. 56. Guijarro Yao Le Formal Wells Darwich Navratilova Cho Yum Sivula K.Lead Halide Quantum Dots Enhance Power Conversion 12696–12704. Previous articleNext article FiguresReferencesRelatedDetails Issue AssignmentVolume 4Issue 3Page: 880-888Supporting Copyright & Permissions© 2021 Chinese SocietyKeywordsperovskite cellsorganic–inorganic materialperylene diimideorganic cellsTi-oxo clustersAcknowledgmentsThe Downloaded 1,739 times PDF DownloadLoading ...
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (33)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....