ActorNode2Vec: An Actor-based solution for Node Embedding over large networks
actode
Node2vec
Network science
data mining
node embedding
02 engineering and technology
actor model
distributed system
complex system
004
embedding
0202 electrical engineering, electronic engineering, information engineering
DOI:
10.3233/ia-190038
Publication Date:
2020-09-22T22:59:31Z
AUTHORS (2)
ABSTRACT
The application of Machine Learning techniques over networks, such as prediction tasks over nodes and edges, is becoming often crucial in the analysis of Complex systems in a wide range of research fields. One of the enabling technologies in that sense is represented by Node Embedding, which enables us to learn features automatically over the network. Among the different approaches proposed in the literature, the most promising are DeepWalk and Node2Vec, where the embedding is computed by combining random walks and neural language models. However, characteristic limitations with these techniques are related to memory requirements and time complexity. In this paper, we propose a distributed and scalable solution, named ActorNode2vec, that keeps the best advantages of Node2Vec and overcomes the limitations with the adoption of the actor model to distribute the computational load. We demonstrate the efficacy of this approach with a large network by analyzing the sensitivity of walk length and number of walks parameters and make a comparison also with Deep walk and an Apache Spark distributed implementation of Node2Vec. Results show that with ActorNode2vec computational times are drastically reduced without losing embedding quality and overcoming memory issues.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....