Optimizing Sparse Mean Reverting Portfolios with AR-HMMs in the Presence of Secondary Effects
0502 economics and business
05 social sciences
DOI:
10.3311/ppee.7352
Publication Date:
2015-04-08T10:36:19Z
AUTHORS (2)
ABSTRACT
In this paper we optimize mean reverting portfolios subject to cardinality constraints. First, the parameters of the corresponding Ornstein-Uhlenbeck (OU) process are estimated by auto-regressive Hidden Markov Models (AR-HMM) in order to capture the underlying characteristics of the financial time series. Portfolio optimization is then performed according to maximizing the mean return by the means of the introduced AR-HMM prediction algorithm. The optimization itself is carried out by stochastic search algorithms. The presented solutions satisfy the cardinality constraint thus providing a sparse portfolios which minimizes the transaction costs and maximizes the interpretability of the results. The performance has been tested on historical data obtained from S&P 500 and FOREX. The results demonstrate that a good average return can be achieved by the proposed AR-HMM based trading algorithms in realistic scenarios. Furthermore, profitability can also be accomplished in the presence of secondary effects.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....