High Accuracy of Epileptic Seizure Detection Using Tiny Machine Learning Technology for Implantable Closed-Loop Neurostimulation Systems
DOI:
10.3390/biomedinformatics5010014
Publication Date:
2025-03-10T09:46:52Z
AUTHORS (4)
ABSTRACT
Background: Epilepsy is one of the most common and devastating neurological disorders, manifesting with seizures and affecting approximately 1–2% of the world’s population. The criticality of seizure occurrence and associated risks, combined with the overwhelming need for more precise and innovative treatment methods, has led to the development of invasive neurostimulation devices programmed to detect and apply electrical stimulation therapy to suppress seizures and reduce the seizure burden. Tiny Machine Learning (TinyML) is a rapidly growing branch of machine learning. One of its key characteristics is the ability to run machine learning algorithms without the need for high computational complexity and powerful hardware resources. The featured work utilizes TinyML technology to implement an algorithm that can be integrated into the microprocessor of an implantable closed-loop brain neurostimulation system to accurately detect seizures in real-time by analyzing intracranial EEG (iEEG) signals. Methods: A dataset containing iEEG signal values from both non-epileptic and epileptic individuals was utilized for the implementation of the proposed algorithm. Appropriate data preprocessing was performed, and two training datasets with 1000 records of non-epileptic and epileptic iEEG signals were created. A test dataset with an independent dataset of 500 records was also created. The web-based platform Edge Impulse was used for model generation and visualization, and different model architectures were explored and tested. Finally, metrics of accuracy, confusion matrices, and ROC curves were used to evaluate the performance of the model. Results: Our model demonstrated high performance, achieving 98% and 99% accuracy on the validation and test EEG datasets, respectively. Our results support the use of TinyML technology in closed-loop neurostimulation devices for epilepsy, as it contributes significantly to the speed and accuracy of seizure detection. Conclusions: The proposed TinyML model demonstrated reliable seizure detection in real-time by analyzing EEG signals and distinguishing epileptic activity from normal brain electrical activity. These findings highlight the potential of TinyML in closed-loop neurostimulation systems for epilepsy, enhancing both speed and accuracy in seizure detection.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (121)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....