Role of SALL4 in HER2+ Breast Cancer Progression: Regulating PI3K/AKT Pathway
0301 basic medicine
Epithelial-Mesenchymal Transition
SALL4
Receptor, ErbB-2
càncer
EMT
Breast Neoplasms
HER2+ breast cancer
Trastuzumab
Article
3. Good health
PI3K/AKT pathway
Phosphatidylinositol 3-Kinases
03 medical and health sciences
Cell Line, Tumor
Humans
Female
SALL4; PI3K/AKT pathway; EMT; HER2+ breast cancer
Proto-Oncogene Proteins c-akt
Transcription Factors
DOI:
10.3390/ijms232113292
Publication Date:
2022-11-01T10:01:28Z
AUTHORS (12)
ABSTRACT
Treatment for the HER2+ breast cancer subtype is still unsatisfactory, despite breakthroughs in research. The discovery of various new molecular mechanisms of transcription factors may help to make treatment regimens more effective. The transcription factor SALL4 has been related to aggressiveness and resistance therapy in cancer. Its molecular mechanisms and involvement in various signaling pathways are unknown in the HER2+ breast cancer subtype. In this study, we have evaluated the implication of SALL4 in the HER2+ subtype through its expression in patients’ samples and gain and loss of function in HER2+ cell lines. We found higher SALL4 expression in breast cancer tissues compared to healthy tissue. Interestingly, high SALL4 expression was associated with disease relapse and poor patient survival. In HER2+ cell lines, transient overexpression of SALL4 modulates PI3K/AKT signaling through regulating PTEN expression and BCL2, which increases cell survival and proliferation while reducing the efficacy of trastuzumab. SALL4 has also been observed to regulate the epithelial–mesenchymal transition and stemness features. SALL4 overexpression significantly reduced the epithelial markers E-cadherin, while it increased the mesenchymal markers β-catenin, vimentin and fibronectin. Furthermore, it has been also observed an increased expression of MYC, an essential transcription factor for regulating epithelial-mesenchymal transition and/or cancer stem cells. Our study demonstrates, for the first time, the importance of SALL4 in the HER2+ subtype and partial regulation of trastuzumab sensitivity. It provides a viable molecular mechanism-driven therapeutic strategy for an important subset of HER2-overexpressing patients whose malignancies are mediated by SALL4 expression.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (46)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....