Hydraulic Rock Drill Fault Classification Using X−Vectors
QA1-939
PHM
x−vectors; hydraulic rock drill; PHM; focal loss
x−vectors
focal loss
hydraulic rock drill
Mathematics
DOI:
10.3390/math11071724
Publication Date:
2023-04-05T05:39:26Z
AUTHORS (5)
ABSTRACT
Hydraulic rock drills are widely used in drilling, mining, construction, and engineering applications. They typically operate in harsh environments with high humidity, large temperature differences, and vibration. Under the influence of environmental noise and operational patterns, the distributions of data collected by sensors for different operators and equipment differ significantly, which leads to difficulty in fault classification for hydraulic rock drills. Therefore, an intelligent and robust fault classification method is highly desired. In this paper, we propose a fault classification technique for hydraulic rock drills based on deep learning. First, considering the strong robustness of x−vectors to the features extracted from the time series, we employ an end−to−end fault classification model based on x−vectors to realize the joint optimization of feature extraction and classification. Second, the overlapping data clipping method is applied during the training process, which further improves the robustness of our model. Finally, the focal loss is used to focus on difficult samples, which improves their classification accuracy. The proposed method obtains an accuracy of 99.92%, demonstrating its potential for hydraulic rock drill fault classification.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....