Highly Thermally Conductive Triple-Level Ordered CNT/PVA Nanofibrous Films

01 natural sciences Article 0104 chemical sciences
DOI: 10.3390/polym16060734 Publication Date: 2024-03-07T16:33:06Z
ABSTRACT
The escalating thermal power density in electronic devices necessitates advanced thermal management technologies. Polymer-based materials, prized for their electrical insulation, flexibility, light weight, and strength, are extensively used in this field. However, the inherent low thermal conductivity of polymers requires enhancement for effective heat dissipation. This work proposes a novel paradigm, emphasizing ordered structures with functional units, to create triple-level, ordered, low-filler loading of multi-walled carbon nanotube (MWCNT)/poly(vinyl alcohol)(PVA) nanofibrous films. By addressing interfacial thermal resistance through –OH groups, the coupling between polymer and MWCNT is strengthened. The triple-level ordered structure comprises aligned PVA chains, aligned MWCNTs, and aligned MWCNT/PVA composite fibers. Focusing on the filler’s impact on thermal conductivity and chain orientation, the thermal transport mechanisms have been elucidated level by level. Our MWCNT/PVA composite, with lower filler loadings (10 wt.%), achieves a remarkable TC exceeding 35.4 W/(m·K), surpassing other PVA composites with filler loading below 50 wt.%.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....