Architecture Exploration of a Backprojection Algorithm for Real-Time Video SAR

backprojection Chemical technology synthetic aperture radar; SAR; video SAR; backprojection; sub-aperture processing; overlapped aperture mode TP1-1185 02 engineering and technology sub-aperture processing Article overlapped aperture mode 0202 electrical engineering, electronic engineering, information engineering video SAR synthetic aperture radar SAR
DOI: 10.3390/s21248258 Publication Date: 2021-12-10T13:17:58Z
ABSTRACT
This paper explores novel architectures for fast backprojection based video synthetic aperture radar (BP-VISAR) with multiple GPUs. The video SAR frame rate is analyzed for non-overlapped and overlapped aperture modes. For the parallelization of the backprojection process, a processing data unit is defined as the phase history data or range profile data from partial synthetic-apertures divided from the full resolution target data. Considering whether full-aperture processing is performed and range compression or backprojection are parallelized on a GPU basis, we propose six distinct architectures, each having a single-stream pipeline with a single GPU. The performance of these architectures is evaluated in both non-overlapped and overlapped modes. The efficiency of the BP-VISAR architecture with sub-aperture processing in the overlapped mode is accelerated further by filling the processing gap from the idling GPU resources with multi-stream based backprojection on multiple GPUs. The frame rate of the proposed BP-VISAR architecture with sub-aperture processing is scalable with the number of GPU devices for large pixel resolution. It can generate 4096 × 4096 video SAR frames of 0.5 m cross-range resolution in 23.0 Hz on a single GPU and 73.5 Hz on quad GPUs.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (35)
CITATIONS (7)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....