BATMAN: A Brain-like Approach for Tracking Maritime Activity and Nuance

data fusion geospatial intelligence Chemical technology 0211 other engineering and technologies TP1-1185 02 engineering and technology artificial intelligence neural networks satellite imagery dark ships Article AIS data 14. Life underwater ship behavior
DOI: 10.3390/s23052424 Publication Date: 2023-02-22T10:29:46Z
ABSTRACT
As commercial geospatial intelligence data becomes more widely available, algorithms using artificial intelligence need to be created to analyze it. Maritime traffic is annually increasing in volume, and with it the number of anomalous events that might be of interest to law enforcement agencies, governments, and militaries. This work proposes a data fusion pipeline that uses a mixture of artificial intelligence and traditional algorithms to identify ships at sea and classify their behavior. A fusion process of visual spectrum satellite imagery and automatic identification system (AIS) data was used to identify ships. Further, this fused data was further integrated with additional information about the ship’s environment to help classify each ship’s behavior to a meaningful degree. This type of contextual information included things such as exclusive economic zone boundaries, locations of pipelines and undersea cables, and the local weather. Behaviors such as illegal fishing, trans-shipment, and spoofing are identified by the framework using freely or cheaply accessible data from places such as Google Earth, the United States Coast Guard, etc. The pipeline is the first of its kind to go beyond the typical ship identification process to help aid analysts in identifying tangible behaviors and reducing the human workload.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (80)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....