Aflatoxin Biosynthesis Is a Novel Source of Reactive Oxygen Species—A Potential Redox Signal to Initiate Resistance to Oxidative Stress?

0301 basic medicine secondary metabolism Superoxide Dismutase R aflatoxin Endosomes Hydrogen Peroxide Catalase Aspergillus parasiticus Article Oxidative Stress 03 medical and health sciences Aspergillus Aflatoxins endosomes oxidative stress Medicine <i>Aspergillus parasiticus</i> redox signaling Reactive Oxygen Species Oxidation-Reduction
DOI: 10.3390/toxins7051411 Publication Date: 2015-04-29T08:42:57Z
ABSTRACT
Aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus involves a minimum of 21 enzymes, encoded by genes located in a 70 kb gene cluster. For aflatoxin biosynthesis to be completed, the required enzymes must be transported to specialized early and late endosomes called aflatoxisomes. Of particular significance, seven aflatoxin biosynthetic enzymes are P450/monooxygenases which catalyze reactions that can produce reactive oxygen species (ROS) as byproducts. Thus, oxidative reactions in the aflatoxin biosynthetic pathway could potentially be an additional source of intracellular ROS. The present work explores the hypothesis that the aflatoxin biosynthetic pathway generates ROS (designated as “secondary” ROS) in endosomes and that secondary ROS possess a signaling function. We used specific dyes that stain ROS in live cells and demonstrated that intracellular ROS levels correlate with the levels of aflatoxin synthesized. Moreover, feeding protoplasts with precursors of aflatoxin resulted in the increase in ROS generation. These data support the hypothesis. Our findings also suggest that secondary ROS may fulfill, at least in part, an important mechanistic role in increased tolerance to oxidative stress in germinating spores (seven-hour germlings) and in regulation of fungal development.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (57)
CITATIONS (64)