Marine N-3 Fatty Acids Mitigate Hyperglycemia in Prediabetes by Improving Muscular Glucose Transporter 4 Translocation and Glucose Homeostasis

DOI: 10.34133/research.0683 Publication Date: 2025-04-04T18:31:57Z
ABSTRACT
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have been proposed to benefit cardiometabolic health. However, the relationship between the intake of DHA and EPA and type 2 diabetes (T2D) risk remains equivocal, and the effects of DHA and EPA on skeletal muscle, the primary organ for glucose metabolism, merit further investigation. Here, we show that habitual fish oil supplementation was associated with a 9% lower T2D risk and significantly interacted with variants at GLUT4 in a prospective cohort of 48,358 people with prediabetes. Muscular metabolome analysis in the animal study revealed that DHA and EPA altered branched-chain amino acids, creatine, and glucose oxidation-related metabolites, concurrently with elevated muscular glycogen synthase and pyruvate dehydrogenase contents that promoted glucose disposal. Further myotube investigation revealed that DHA and EPA promoted muscular GLUT4 translocation by elevating Rab GTPases and target-SNARE expression. Together, DHA and EPA supplementation provides a promising approach for T2D prevention through targeting muscular glucose homeostasis, including enhancing GLUT4 translocation, glycogen synthesis, and aerobic glycolysis.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (73)
CITATIONS (0)