Nowhere-Zero 3-Flows in Signed Planar Graphs

0102 computer and information sciences 01 natural sciences
DOI: 10.37236/11892 Publication Date: 2024-06-13T16:38:31Z
ABSTRACT
Extending Grötzsch's 3-coloring theorem in the flow setting, Steinberg and Younger in 1989 proved that every 4-edge-connected planar or projective planar graph admits a nowhere-zero 3-flow (3-NZF for short), while Tutte's 3-flow conjecture asserts all 4-edge-connected graphs admit 3-NZFs. In this paper, we generalize Grötzsch's theorem to signed planar graphs by showing that every 4-edge-connected signed planar graph with two negative edges admits a 3-NZF. On the other hand, a result from Máčajová and Škoviera implies that there exist infinitely many 4-edge-connected signed planar graphs with three negative edges admitting no 3-NZFs but permitting 4-NZFs. Our proof employs the flow extension ideas from Steinberg-Younger and Thomassen, as well as refined exploration of the location of negative edges and elaborated discharging arguments in signed planar graphs.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....