Multiswitchable photoacid–hydroxyflavylium–polyelectrolyte nano-assemblies

multiswitchable Science Q Organic chemistry electrostatic self-assembly 02 engineering and technology photoacid 01 natural sciences Full Research Paper 3. Good health 0104 chemical sciences QD241-441 13. Climate action hydroxyflavylium 0210 nano-technology polyelectrolyte
DOI: 10.3762/bjoc.17.17 Publication Date: 2021-01-19T09:00:00Z
ABSTRACT
Light- and pH-responsive nano-assemblies with switchable size and structure are formed by the association of a photoacid, anthocyanidin, and a linear polyelectrolyte in aqueous solution. Specifically, anionic disulfonated naphthol derivatives, neutral hydroxyflavylium, and cationic poly(allylamine) are used as building blocks for the ternary electrostatic self-assembly, forming well-defined supramolecular assemblies with tunable sizes of 50 to 500 nm. Due to the network of possible chemical reactions for the anthocyanidin and the excited-state dissociation of the photoacid upon irradiation, different ways to alter the ternary system through external triggering are accessible. The structure and trigger effects can be controlled through the component ratios of the samples. Dynamic and static light scattering (DLS, SLS) and ζ-potential measurements were applied to study the size and the stability of the particles, and information on the molecular structure was gained by UV–vis spectroscopy. Isothermal titration calorimetry (ITC) provided information on the thermodynamics and interaction forces in the supramolecular assembly formation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (94)
CITATIONS (7)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....