Gut microbiota related to Giardia duodenalis, Entamoeba spp. and Blastocystis hominis infections in humans from Côte d’Ivoire

Adult Giardiasis Male 0301 basic medicine Adolescent Giardia duodenali Blastocystis Infections Entamoeba blastocystis homini Feces 03 medical and health sciences Settore BIO/12 - BIOCHIMICA CLINICA E BIOLOGIA MOLECOLARE CLINICA microbiota microbiota; giardia duodenalis; entamoeba spp.; blastocystis hominis; dysbiosis; côte d’ivoire Humans Blastocystis hominis Settore VET/06 - PARASSITOLOGIA E MALATTIE PARASSITARIE DEGLI ANIMALI Child Aged Entamoeba spp Entamoebiasis dysbiosi Microbiota Infant côte d’ivoire giardia duodenali Microbiota; Giardia duodenalis; Entamoeba spp.; Blastocystis hominis; dysbiosis; Côte d’Ivoire DNA Fingerprinting Gastrointestinal Microbiome 3. Good health Cote d'Ivoire Child, Preschool Côte d’Ivoire entamoeba spp. Female Giardia lamblia Blastocystis homini
DOI: 10.3855/jidc.8179 Publication Date: 2016-09-30T16:38:36Z
ABSTRACT
Introduction: Literature data provide little information about protozoa infections and gut microbiota compositional shifts in humans. This preliminary study aimed to describe the fecal bacterial community composition of people from Côte d’Ivoire harboring Giardia duodenalis, Entamoeba spp., and Blastocystis hominis, in trying to discover possible alterations in their fecal microbiota structure related to the presence of such parasites. Methodology: Twenty fecal samples were collected from people inhabiting three different localities of Côte d’Ivoire for copromicroscopic analysis and molecular identification of G. duodenalis, Entamoeba spp., and B. hominis. Temporal temperature gradient gel electrophoresis (TTGE) was used to obtain a fingerprint of the overall bacterial community; quantitative polymerase chain reaction (qPCR) was used to define the relative abundances of selected bacterial species/group, and multivariate statistical analyses were employed to correlate all data. Results: Cluster analysis revealed a significant separation of TTGE profiles into four clusters (p < 0.0001), with a marked difference for G. duodenalis-positive samples in relation to the others (p = 5.4×10-6). Interestingly, qPCR data showed how G. duodenalis-positive samples were related to a dysbiotic condition that favors potentially harmful species (such as Escherichia coli), while Entamoeba spp./B. hominis-positive subjects were linked to a eubiotic condition, as shown by a significantly higher Faecalibacterium prausnitzii-Escherichia coli ratio. Conclusions: This preliminary investigation demonstrates a differential fecal microbiota structure in subjects infected with G. duodenalis or Entamoeba spp./B. hominis, paving the way for using further next-generation DNA technologies to better understand host-parasite-bacteria interactions, aimed at identifying potential indicators of microbiota changes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (83)