The influence of lateral transport on sedimentary alkenone paleoproxy signals

QE1-996.5 Ecology Life 13. Climate action QH501-531 2506 Geología Geology 14. Life underwater 01 natural sciences QH540-549.5 0105 earth and related environmental sciences
DOI: 10.5194/bg-19-613-2022 Publication Date: 2022-02-02T13:20:29Z
ABSTRACT
Abstract. Alkenone signatures preserved in marine sedimentary records are considered one of the most robust paleothermometers available and are often used as a proxy for paleoproductivity. However, important gaps remain regarding the provenance and fate of alkenones, as well as their impact on derived environmental signals in marine sediments. Here, we analyze the abundance, distribution and radiocarbon (14C) age of alkenones in bulk sediments and corresponding grain-size fractions in surficial sediments from seven continental margin settings in the Pacific and Atlantic oceans to evaluate the impact of organo-mineral associations and hydrodynamic sorting on sedimentary alkenone signals. We find that alkenones preferentially reside within fine-grained mineral fractions of continental margin sediments, with the preponderance of alkenones residing within the fine-silt fraction (2–10 µm) and most strongly influencing alkenone-14C age and sea surface temperature (SST) signals from bulk sediments as a consequence of their proportional abundance and higher degree of organic matter protection relative to other fractions. Our results provide further evidence for the key role of selective association of alkenones with mineral surfaces and associated hydrodynamic mineral sorting processes on the reliability of alkenone signals encoded in marine sediments (14C age, content and distribution) and the fidelity of corresponding proxy records (productivity and sea SST) in the spatial and temporal domain.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (84)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....