Rice cDNA Encoding PROLM is Capable of Rescuing Salt Sensitive Yeast Phenotypes G19 and Axt3K from Salt Stress

Red yeast rice
DOI: 10.5281/zenodo.1062968 Publication Date: 2011-11-25
ABSTRACT
Rice seed expression (cDNA) library in the Lambda Zap 11® phage constructed from the developing grain 10-20 days after flowering was transformed into yeast for functional complementation assays in three salt sensitive yeast mutants S. cerevisiae strain CY162, G19 and Axt3K. Transformed cells of G19 and Axt3K with pYES vector with cDNA inserts showed enhance tolerance than those with empty pYes vector. Sequencing of the cDNA inserts revealed that they encode for the putative proteins with the sequence homologous to rice putative protein PROLM24 (Os06g31070), a prolamin precursor. Expression of this cDNA did not affect yeast growth in absence of salt. Axt3k and G19 strains expressing the PROLM24 were able to grow upto 400 mM and 600 mM of NaCl respectively. Similarly, Axt3k mutant with PROLM24 expression showed comparatively higher growth rate in the medium with excess LiCl (50 mM). The observation that expression of PROLM24 rescued the salt sensitive phenotypes of G19 and Axt3k indicates the existence of a regulatory system that ameliorates the effect of salt stress in the transformed yeast mutants. However, the exact function of the cDNA sequence, which shows partial sequence homology to yeast UTR1 is not clear. Although UTR1 involved in ferrous uptake and iron homeostasis in yeast cells, there is no evidence to prove its role in Na+ homeostasis in yeast cells. Absence of transmembrane regions in Os06g31070 protein indicates that salt tolerance is achieved not through the direct functional complementation of the mutant genes but through an alternative mechanism.<br/>{"references": ["Pearson, G.A. & Bernstein, L. (1959). Salinity effects at several growth\nstages of rice. Agronomy Journal, 51,654-657.", "Akbar, M., Yabuno, T. & Nakao, S. (1972). Breeding for saline resistant\nvarieties of rice; Variability for salt tolerance among some rice varieties.\nJapan Journal of Breeding, 22, 277-284.", "Abdullah, Z., Khan, M. A. & Flowers, T.J. (2001). Causes of Sterility in\nSeed Set of Rice under Salinity Stress. Journal of Agronomy and Crop\nScience, 187(1), 25-32.", "Sultana, N., Ikeda, T. & Itoh, R. (1999). Effect of NaCl salinity on\nphotosynthesis and dry matter accumulation in developing rice grains\nEnvironmental and Experimental Botany. Volume 42, Issue 3, Pages\n211-220.", "Serrano, R. & Gaxiola, R. (1994). Microbial models and salt stress\ntolerance in plants. Critical Review in Plant Science, 13, 121-138.", "Serrano, R. (1991). Transport across yeast vacuolar and plasma\nmembranes, p.523-585. In J. R. Pringle, J. R. Broach, and E. W. Jones\n(ed.), The molecular and cellular biology of the yeast Saccharomyces.\nCell cycle and cell biology. Cold Spring Harbor Laboratory Press, Cold\nSpring Harbor, N.Y.", "Serrano, R., and. Villalba J. M. (1995). Expression and localization of\nplant membrane proteins in Saccharomyces. Methods in Cell\nBiology,50, 481-496.", "Ramos, J. (1999). Contrastingsal t tolerance mechanisms in\nSaccharomyces cerevisiae and Debaryomyces hansenii. Recent Research\nDevelopment Microbiology, 3, 377-390.", "Greenway, H., & Munns R. (1980). Mechanisms of salt tolerance in\nnon-halophytes. Annual Review of Plant Physiology, 31,149-190.\n[10] Marschner, H. (1995). Mineral nutrition of higher plants. Springer,\nBerlin, Germany.\n[11] Serrano, R. 1996. Salt tolerance in plants and microorganisms: toxicity\ntargets and defense responses. Int. Rev. Cytol. 165:1-51.\n[12] Gaber, R. F., Styles, C. A. & Fink, G. R. (1988) TRK1 encodes a plasma\nmembrane protein required for high-affinity potassium transport in\nSaccharomyces cerevisiae. Molecular and Cellular Biology, 8, 2848-\n2859.\n[13] Ko, C. H. & Gaber R. F.(1991). TRK1 and TRK2 encode structurally\nrelated K+ transporters in Saccharomyces cerevisiae. Molecular and\nCellular Biology, 11, 4266-4273.\n[14] Mendoza, I., Rubio, F., Rodr\u251c\u00a1guez-Navarro, A. & Pardo, J. M. (1994).\nThe protein phosphatase calcineurin is essential for NaCl tolerance of\nSaccharomyces cerevisiae. Journal of Biological Chemistry, 269:8792-\n8796.\n[15] Rudolph, H.K, Antebi, A., Fink, G.R., Buckley, C.M., Dorman, T.E.,\nLeVitre, J., Davidow, L.S., Mao, J.I. & Moir, D.T. (1989). The yeast\nsecretory pathway is perturbed by mutations in PMR1, a member of a\nCa2+ ATPase family. Cell, 58(1), 133-145.\n[16] Martinez, R., Latreille, M.T. & Mirande, M. (1991). A PMR2 tandem\nrepeat with a modified C-terminus is located downstream from the\nKRS1 gene encoding lysyl-tRNA synthetase in Saccharomyces\ncerevisiae. Molecular and General Genetics, 227(1), 149-154.\n[17] Rodr\u251c\u00a1guez-Navarro, A., Quintero, F.J. & Garciadebl\u251c\u00eds, B. (1994).\nNa(+)-ATPases and Na+/H+ antiporters in fungi. Biochimica et\nBiophysica Acta, 1187(2), 203-205.\n[18] Haro, R., Ba\u251c\u2592uelos, M. A., Quintero, F. J., Rubio, F. & Rodr\u251c\u00a1guez-\nNavarro, A. (1993) Genetic basis of Sodium exclusion and Sodium\ntolerance in yeast. A model for plants. Plant Physiology, 89, 868-874.\n[19] Garciadeblas, B., Rubio, F., Quintero, F.J., Banuelos, M.A. & Haro, R.\n(1993). Differential expression of two genes encoding isoforms of the\nATPase involved in sodium efflux in Saccharomyces cerevisiae.\nMolecular & General Genetics, 236, 363-368.\n[20] Andre, B. (1995). An overview of membrane transport proteins in\nSaccharomyces cerevisiae. Yeast, 11, 1575-1611.\n[21] Prior, C., Potier, S., Souciet J et al. Characterization of the NHA1 gene\nencoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae.\nFEBS Letter, 1996; 387:89-93.\n[22] Nass, R. & Rao, R. (1998). Novel localization of a Na+/H+ exchanger in\na late endosomal compartment of yeast. Journal of Biological Chemistry,\n273: 21054-21060.\n[23] Mulet, J.M., Leube, M.P., Kron, S.J., Rios, G., Fink, G.R. & Serrano, R.\n(1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in\nYeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2\nPotassium Transporter, Molecular and cellular biology, 19( 5), 3328-\n3337.\n[24] P\u00e9rez-Valle J., Jenkins H., Merchan S., Montiel V., Ramos J., Sharma\nS., Serrano R.& Yenush L. (2007). Key role for intracellular K+ and\nprotein kinases Sat4/Hal4 and Hal5 in the plasma membrane\nstabilization of yeast nutrient transporters. Molecular and Cellular\nBiology, 27(16)5725-36.\n[25] Mulet, J.M., Alejandro, S., Romero, C., Serrano R., Munson, A.M.,\nHaydon, D.H., Love, S.L., Fell, G.L., Palanivel, V.R. & Rosenwald,\nA.G.(2004).Yeast ARL1 encodes a regulator of K+ influx. Journal of\nCell Sciences, 117(11):2309-20.\n[26] Casado, C., Yenush, L., Melero, C., Ruiz Mdel, C., Serrano, R., P\u00e9rez-\nValle, J., Ari\u251c\u2592o, J. & Ramos J. (2010). Regulation of Trk-dependent\npotassium transport by the calcineurin pathway involves the Hal5\nkinase, FEBS Letters, 584(11), 2415-2420.\n[27] Forment, J., Mulet, J.M., Vicente, O. & Serrano, R. (2002). The yeast\nSR protein kinase Sky1p modulates salt tolerance, membrane potential\nand the Trk1,2 potassium transporter. Biochimica et Biophysica\nActa,1565(1):36-40.\n[28] Rios, G., Ferrando, A. & Serrano, R. (1997). Mechanisms of salt\ntolerance conferred by overexpression of the HAL1 gene in\nSaccharomyces cerevisiae. Yeast, 13(6), 515-28.\n[29] Munsona, A.M., Love, S.L., Shu, J., Palanivel, V.R. & Rosenwald,\nA.G., (2004). ARL1 participates with ATC1/LIC4 to regulate responses\nof yeast cells to ions, Biochemical and Biophysical Research\nCommunications, 315( 3), 617-623.\n[30] Ferrando, A., Kron, S. J., Rios, G., Fink, G. R. & Serrano, R. (1995).\nRegulation of cation transport in Saccharomyces cerevisiae by the salt\ntolerance gene HAL3. Molecular and Cellular Biology, 15, 5470-5481.\n[31] de Nadal, E., Clotet, J., Posas, F., Serrano, R., G\u251c\u2502mez, N. & Ari\u251c\u2592o, J.\n(1998). The yeast halotolerance determinant Hal3p is an inhibitory\nsubunit of the Ppzlp Ser/Thr protein phosphatase. Proceedings of\nNatational Academy of Science, USA, 95,7357-7362.\n[32] Schachtman, D.P. & Schroeder. J.I.(1994). Structure and transport\nmechanism of a high-affinity potassium uptake transporter from higher\nplants. Nature, 370, 655-658.\n[33] Igarashi, Y., Yoshiba, Y., Sanada, Y., Yamaguchi-Shinozaki, K., Wada,\nK. & Shinozaki, K.(1997) Characterization of the gene for N1-pyrroline-\n5-carboxylate synthetase and correlation between the expression of the\ngene and salt tolerance in Oryza sativa L. Plant molecular Biology,33(5),\n857-865.\n[34] Obata, T., Kitamoto, H.K., Nakamura, A., Fukuda, A., Tanaka, Y.,\n(2007) Rice Shaker Potassium Channel OsKAT1 Confers Tolerance to\nSalinity Stress on Yeast and Rice Cells. Plant Physiology,144, 1978-\n1985.\n[35] Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A.,\nHirochika, H.& Tanaka, Y. (2004) Function, intracellular Localization\nand the Importance in Salt Tolerance of a Vacuolar Na+/H+ Antiporter\nfrom Rice. Plant Cell Physiology, 45(2), 146-159.\n[36] Gietz, D., St Jean, A., Woods, R.A. & Schiestl, R.H. (1992) Improved\nmethod for high efficiency transformation of intact yeast cells. Nucleic\nAcids Research, 20, 1425.\n[37] Chen, D., Yang, B., Kuo, T. (1992). One-step transformation of yeast in\nstationary phase. Current Genetic 21: 83-84.\n[38] Quintero, F. J., Garciadeblas, B. & Rodr\u2500\u2592'guez-Navarro, A. (1996). The\nSAL1 gene of Arabidopsis, encoding an enzyme with 3 (2), 5\nbisphosphate nucleotidase and inositol 1-phosphatase activities,\nincreases salt tolerance in yeast. Plant Cell, 8, 529-537.\n[39] Gobert, A., Park, G., Amtmann, A., Sanders, D. & Maathuis, F.J.M.\n(2006). Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a\nnonselective ion transporter involved in germination and cation\ntransport. Journal of Experimental Botany, 57: 791-800.\n[40] Wieland, J., Nitsche, A.M., Strayle, J., Steiner, H. & Rudolph, H.K.\n(1995). The PMR2 gene cluster encodes functionally distinct isoforms of\na putative Na1 pump in the yeast plasma membrane. EMBO J 14, 3870-\n3882. O. Young, \"Synthetic structure of industrial plastics (Book style\nwith paper title and editor),\" in Plastics, 2nd ed. vol. 3, J. Peters, Ed.\nNew York: McGraw-Hill, 1964, pp. 15-64.\n[41] Banuelos, M.A., Sychrova, H., Bleykasten-Grosshans, C., Souciet, J.L.\n& Potier, S. (1998). The Nha1 antiporter of Saccharomyces cerevisiae\nmediates sodium and potassium efflux. Microbiology, 144, 2749-2758.\n[42] Darley, C.P., Wuytswinkel, O.C.M., Woude, K., Mager, W.H. & De\nBoer, A.H. (2000). Arabidopsis thaliana and Saccharomyces cerevisiae\nNHX1 genes encode amiloride sensitive electroneutral Na1/H1\nexchangers. Biochemical Journal, 351, 241-249.\n[43] Borst-Pauwels, G. W. F. H. (1981). Ion transport in yeast. Biochimica et\nBiophysica Acta, 650, 88-127.\n[44] de Nadal, E., Calero, F., Ramos, J. & Ari\u251c\u2592o, J. (1999) Biochemical and\nGenetic Analyses of the Role of Yeast Casein Kinase 2 in Salt\nTolerance, Journal of Bacteriology,181(20), 6456-6462.\n[45] Kawai, S., Suzuki, S., Mori, S. & Murata K. (2001). Molecular cloning\nand identification of UTR1 of a yeast Saccharomyces cerevisiae as a\ngene encoding an NAD kinase. FEMS Microbiology Letters, 200(2),\n181-184.\n[46] Batard Y, Hehn A, Nedelkina S, Schalk M, Pallett K, Schaller H,\nWerck-Reichhart D (2000) Increasing expression of P450 and P450-\nreductase proteins from monocots in heterologous systems. Arch\nBiochem Biophys 379:161-169.\n[47] Tusn\u251c\u00eddy, G.E. & Simon, I. (2001). The HMMTOP transmembrane\ntopology prediction server. Bioinformatics, 17, 849-850.\n[48] Sundaram R. M., Sakthivel K., Hariprasad A. S., Ramesha M. S.,\nViraktamath B. C., Neeraja C. N., Balachandran S. M., Shobha Rani N.,\nRevathi P. Sandhya P., et al. (2010) Molecular Breeding Development\nand validation of a PCR-based functional marker system for the major\nwide-compatible gene locus S5 in rice 26, 719-727.\n[49] Marchler-Bauer A et al. (2011), \"CDD: a Conserved Domain Database\nfor the functional annotation of proteins.\", Nucleic Acids Res.39(D)225-\n9.\n[50] Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L.,\nWidmayer, P., Gruissem, W. & Zimmermann, P (2008).Genevestigator\nV3: a reference expression database for the meta-analysis of\ntranscriptomes. Advances in Bioinformatics, 2008, 420747.\n[51] Pandit, A., Rai, V., Bal, S., Kumar, V., Chauhan, M., Gautam, R.K.,\nSingh, R., Sharma, P.C. & Singh, K., (2010). Combining QTL mapping\nand transcriptome profiling of bulked RILs for identification of\nfunctional polymorphism for salt tolerance genes in rice (Oryza sativa\nL.), Molecular Genetics and Genomics, 284( 2), 121-136.\n[52] Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A.M., Zeng, L.,\nWanamaker, S.I., Mandal, J., Xu, J., Cui, X. & Close T.J., (2005)\nComparative transcriptional profiling of two contrasting rice genotypes\nunder salinity stress during the vegetative growth stage. Plant\nPhysiology 139:822-835.\n[53] Cotsaftis, O., Plett, D., Johnson, A.A., Walia, H., Wilson, C., Ismail,\nA.M., Close, T.J., Tester, M. & Baumann U. (2011) Root-specific\ntranscript profiling of contrasting rice genotypes in response to salinity\nstress. Molecular Plant, 4(1),25-41.\n[54] Senadheera, P., Singh, R. K. & Maathuis, F.J. M., (2009). Differentially\nexpressed membrane transporters in rice roots may contribute to cultivar\ndependent salt tolerance, Journal of Experimental Botany, 60(9): 2553-\n2563.\n[55] Charoenlappanit S, Roytrakul S , Teerakathiti T, Juntawong N (2010)\nProteome analysis of salt tolerant and salt sensitive rice suspension cells\nin response to NaCl stress. 36th Congress on Science and Technology of\nThailand."]}<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES ()
CITATIONS ()
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....