the complexity of quantum spin systems on a two dimensional square lattice
Quantum Physics
0103 physical sciences
FOS: Physical sciences
Quantum Physics (quant-ph)
01 natural sciences
DOI:
10.5555/2016985.2016987
Publication Date:
2008-11-01
AUTHORS (2)
ABSTRACT
The problem 2-LOCAL HAMILTONIAN has been shown to be complete for the quantum computational class QMA. In this paper we show that this important problem remains QMA-complete when the interactions of the 2-local Hamiltonian are between qubits on a two-dimensional (2-D) square lattice. Our results are partially derived with novel perturbation gadgets that employ mediator qubits which allow us to manipulate k-local interactions. As a side result, we obtain that quantum adiabatic computation using 2-local interactions restricted to a 2-D square lattice is equivalent to the circuit model of quantum computation. Our perturbation method also shows how any stabilizer space associated with a k-local stabilizer (for constant k) can be generated as an approximate ground-space of a 2-local Hamiltonian.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES ()
CITATIONS ()
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....