Improving the corrosion behaviour of Zn-Ni alloy coatings on 316 SS from chloride-sulfate bath by addition of triethanolamine or sucrose
DOI:
10.5599/jese.2607
Publication Date:
2025-04-03T07:33:38Z
AUTHORS (3)
ABSTRACT
Corrosion of Zn-Ni alloy coatings on stainless steel 316 SS in a chloride-sulfate bath with the addition of either triethanolamine or sucrose was examined. A constant cathode potential was used to deposit zinc-nickel alloys, while cyclic voltammetry and potentio-dynamic polarization were used to measure corrosion. In addition, scanning electron microscopy was utilized to analyse Zn-Ni alloy coating surface layers formed with¬out and with additives. The outcomes discovered that the corrosion resistance of Zn-Ni alloy coat¬ings in 3.5 % NaCl solution was highly influenced by adding triethanolamine or sucrose. Decreasing the Zn:Ni molar ratio led to an increase in corrosion resistance. All Zn-Ni alloy coatings were superior to pure Zn coating in their corrosion behaviour. The best result was found for potentiostatic electrodeposition of Zn-Ni alloy at the cathodic potential of -1.3 V vs. Ag/AgCl for 20 minutes in the presence of 0.335 M triethanolamine from a solution containing 0.02 M ZnCl2, 0.1 M NiSO4, 0.4 M H3BO4 and 1 M Na2SO4. For this Zn-Ni coating, a low corrosion rate of 0.00795 mm year-1 was observed at Ecorr = -0.5 V vs. Ag/AgCl and icorr= 0.535 µA cm-2. Scanning electron microscopy confirmed that this alloy has a granular structure with no cracks and a less porous structure. The new Zn-Ni alloy is superior in its properties in terms of corrosion resistance compared with those obtained in previous studies.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....