C/EBP Homologous Binding Protein (CHOP) Underlies Neural Injury in Sleep Apnea Model
Male
Motor Neurons
Analysis of Variance
0303 health sciences
Blotting, Western
Brain
NADPH Oxidases
Apoptosis
Hypoxia-Inducible Factor 1, alpha Subunit
Real-Time Polymerase Chain Reaction
3. Good health
Mice, Inbred C57BL
Disease Models, Animal
Mice
Oxidative Stress
03 medical and health sciences
Sleep Apnea Syndromes
Animals
Transcription Factor CHOP
DOI:
10.5665/sleep.2528
Publication Date:
2013-03-29T21:21:44Z
AUTHORS (8)
ABSTRACT
Obstructive sleep apnea (OSA) is associated with cognitive impairment and neuronal injury. Long-term exposure to intermittent hypoxia (LTIH) in rodents, modeling the oxygenation patterns in sleep apnea, results in NADPH oxidase 2 (Nox2) oxidative injury to many neuronal populations. Brainstem motoneurons susceptible to LTIH injury show uncompensated endoplasmic reticulum stress responses with increased (CCAAT/enhancer binding protein homologous protein (CHOP). We hypothesized that CHOP underlies LTIH oxidative injury. In this series of studies, we first determined whether CHOP is upregulated in other brain regions susceptible to LTIH oxidative Nox2 injury and then determined whether CHOP plays an adaptive or injurious role in the LTIH response. To integrate these findings with previous studies examining LTIH neural injury, we examined the role of CHOP in Nox2, hypoxia-inducible factor-1α (HIF-1α) responses, oxidative injury and apoptosis, and neuron loss.Within/between mice subjects.Laboratory setting. PARTICIPANTSSUBJECTS: CHOP null and wild-type adult male mice.LTIH or sham LTIH.Relative to wild-type mice, CHOP-/- mice conferred resistance to oxidative stress (superoxide production/ carbonyl proteins) in brain regions examined: cortex, hippocampus, and motor nuclei. CHOP deletion prevented LTIH upregulation of Nox2 and HIF-1α in the hippocampus, cortex, and brainstem motoneurons and protected mice from neuronal apoptosis and motoneuron loss.Endogenous CHOP is necessary for LTIH-induced HIF-1α, Nox2 upregulation, and oxidative stress; CHOP influences LTIH-induced apoptosis in neurons and loss of neurons. Findings support the concept that minimizing CHOP may provide neuroprotection in OSA.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (41)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....