Painel de Proveniência: análise durante o treinamento de Redes Neurais Profundas

0202 electrical engineering, electronic engineering, information engineering 02 engineering and technology
DOI: 10.5753/sbbd_estendido.2021.18158 Publication Date: 2021-12-13T13:04:04Z
ABSTRACT
O treinamento de redes neurais profundas requer o ajuste de hiperparâmetros. Este processo é custoso e ainda que existam ferramentas para escolha automática da melhor configuração de hiperparâmetros, o usuário é responsável pela decisão final. Para isso, é necessário analisar o impacto de diferentes hiperparâmetros sobre métricas como acurácia e perda. A proveniência é uma forma de representar as relações de derivação de dados, que fornecem um suporte importante nesta análise de dados. Observando as dificuldades para análises de proveniência e aprendizado profundo, propusemos anteriormente uma ferramenta que coleta proveniência diretamente do Keras e permite análises em tempo de execução, chamada Keras-Prov. Para aperfeiçoar suas capacidades analíticas, apresentamos neste artigo uma integração dessa ferramenta com o Elasticsearch e o Kibana, criando um Painel de Proveniência para análise durante o treinamento. Apresentamos uma avaliação experimental dessa integração usando a CNN AlexNet.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....