Active contraction of microtubule networks

570 dynein QH301-705.5 Science Xenopus Q R Dyneins cytoskeleton Biophysics and Structural Biology 530 Microtubules 3. Good health microtubules Oocytes Medicine Animals Biology (General) Protein Multimerization active matter Microtubule-Associated Proteins
DOI: 10.7554/elife.10837 Publication Date: 2015-12-22T12:41:18Z
ABSTRACT
Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large-scale behaviors of these systems. Here, we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions, which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (53)
CITATIONS (121)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....