An arbitrary-spectrum spatial visual stimulator for vision research

retina QH301-705.5 dichromatic vision two-photon calcium imaging Science Q R Retina Mice color vision tetrachromatic vision visual system Medicine Animals Biology (General) Photic Stimulation Vision, Ocular Zebrafish Neuroscience
DOI: 10.7554/elife.48779 Publication Date: 2019-09-23T12:00:52Z
ABSTRACT
Visual neuroscientists require accurate control of visual stimulation. However, few stimulator solutions simultaneously offer high spatio-temporal resolution and free control over the spectra of the light sources, because they rely on off-the-shelf technology developed for human trichromatic vision. Importantly, consumer displays fail to drive UV-shifted short wavelength-sensitive photoreceptors, which strongly contribute to visual behaviour in many animals, including mice, zebrafish and fruit flies. Moreover, many non-mammalian species feature more than three spectral photoreceptor types. Here, we present a flexible, spatial visual stimulator with up to six arbitrary spectrum chromatic channels. It combines a standard digital light processing engine with open source hard- and software that can be easily adapted to the experimentalist’s needs. We demonstrate the capability of this general visual stimulator experimentally in the in vitro mouse retinal whole-mount and the in vivo zebrafish. With this work, we intend to start a community effort of sharing and developing a common stimulator design for vision research.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (71)
CITATIONS (74)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....