A quality assessment algorithm for no-reference images based on transfer learning

Non-reference image quality assessment (IQA-NRTL) Image quality assessment (IQA) Electronic computers. Computer science QA75.5-76.95 Deep convolutional neural network Adaptive fusion network Transfer learning
DOI: 10.7717/peerj-cs.2654 Publication Date: 2025-01-31T08:26:07Z
ABSTRACT
Image quality assessment (IQA) plays a critical role in automatically detecting and correcting defects in images, thereby enhancing the overall performance of image processing and transmission systems. While research on reference-based IQA is well-established, studies on no-reference image IQA remain underdeveloped. In this article, we propose a novel no-reference IQA algorithm based on transfer learning (IQA-NRTL). This algorithm leverages a deep convolutional neural network (CNN) due to its ability to effectively capture multi-scale semantic information features, which are essential for representing the complex visual perception in images. These features are extracted through a visual perception module. Subsequently, an adaptive fusion network integrates these features, and a fully connected regression network correlates the fused semantic information with global semantic information to perform the final quality assessment. Experimental results on authentically distorted datasets (KonIQ-10k, BIQ2021), synthetically distorted datasets (LIVE, TID2013), and an artificial intelligence (AI)-generated content dataset (AGIQA-1K) show that the proposed IQA-NRTL algorithm significantly improves performance compared to mainstream no-reference IQA algorithms, depending on variations in image content and complexity.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (39)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....